One of the biggest challenges in experimental quantum information is to sustain the fragile superposition state of a qubit. Long lifetimes can be achieved for material qubit carriers as memories, at least in principle, but not for propagating photons that are rapidly lost by absorption, diffraction or scattering. The loss problem can be mitigated with a nondestructive photonic qubit detector that heralds the photon without destroying the encoded qubit.
View Article and Find Full Text PDFFuture quantum repeater architectures, capable of efficiently distributing information encoded in quantum states of light over large distances, will benefit from multiplexed photonic quantum memories. In this work we demonstrate a temporally multiplexed quantum repeater node in a laser-cooled cloud of ^{87}Rb atoms. We employ the Duan-Lukin-Cirac-Zoller protocol where pairs of photons and single collective spin excitations (so-called spin waves) are created in several temporal modes using a train of write pulses.
View Article and Find Full Text PDFEntanglement between light and matter combines the advantage of long distance transmission of photonic qubits with the storage and processing capabilities of atomic qubits. To distribute photonic states efficiently over long distances several schemes to encode qubits have been investigated-time-bin encoding being particularly promising due to its robustness against decoherence in optical fibers. Here, we demonstrate the generation of entanglement between a photonic time-bin qubit and a single collective atomic spin excitation (spin wave) in a cold atomic ensemble, followed by the mapping of the atomic qubit onto another photonic qubit.
View Article and Find Full Text PDFInterfacing fundamentally different quantum systems is key to building future hybrid quantum networks. Such heterogeneous networks offer capabilities superior to those of their homogeneous counterparts, as they merge the individual advantages of disparate quantum nodes in a single network architecture. However, few investigations of optical hybrid interconnections have been carried out, owing to fundamental and technological challenges such as wavelength and bandwidth matching of the interfacing photons.
View Article and Find Full Text PDFStrong interaction between two single photons is a long standing and important goal in quantum photonics. This would enable a new regime of nonlinear optics and unlock several applications in quantum information science, including photonic quantum gates and deterministic Bell-state measurements. In the context of quantum networks, it would be important to achieve interactions between single photons from independent photon pairs storable in quantum memories.
View Article and Find Full Text PDFThe generation of ultra-narrowband, pure and storable single photons with widely tunable wave shape is an enabling step toward hybrid quantum networks requiring interconnection of remote disparate quantum systems. It allows interaction of quantum light with several material systems, including photonic quantum memories, single trapped ions and opto-mechanical systems. Previous approaches have offered a limited tuning range of the photon duration of at most one order of magnitude.
View Article and Find Full Text PDFWe demonstrate active control of inhomogeneous dephasing and rephasing for single collective atomic spin excitations (spin waves) created by spontaneous Raman scattering in a quantum memory based on cold 87Rb atoms. The control is provided by a reversible external magnetic field gradient inducing an inhomogeneous broadening of the atomic hyperfine levels. We demonstrate experimentally that active rephasing preserves the single photon nature of the retrieved photons.
View Article and Find Full Text PDFCoherently converting the frequency and temporal waveform of single and entangled photons will be crucial to interconnect the various elements of future quantum information networks. Of particular importance is the quantum frequency conversion of photons emitted by material systems able to store quantum information, so-called quantum memories. There have been significant efforts to implement quantum frequency conversion using nonlinear crystals, with non-classical light from broadband photon-pair sources and solid-state emitters.
View Article and Find Full Text PDF