Publications by authors named "Pau Closas"

Hybrid physics-based data-driven models, namely, augmented physics-based models (APBMs), are capable of learning complex state dynamics while maintaining some level of model interpretability that can be controlled through appropriate regularizations of the data-driven component. In this article, we extend the APBM formulation for high-order Markov models, where the state space is further augmented with past states (AG-APBM). Typically, state augmentation is a powerful method for state estimation for a high-order Markov model, but it requires the exact knowledge of the system dynamics.

View Article and Find Full Text PDF

Multitemporal hyperspectral unmixing (MTHU) is a fundamental tool in the analysis of hyperspectral image sequences. It reveals the dynamical evolution of the materials (endmembers) and of their proportions (abundances) in a given scene. However, adequately accounting for the spatial and temporal variability of the endmembers in MTHU is challenging, and has not been fully addressed so far in unsupervised frameworks.

View Article and Find Full Text PDF

Signal acquisition is a crucial step in Global Navigation Satellite System (GNSS) receivers, which is typically solved by maximizing the so-called Cross-Ambiguity Function (CAF) as a hypothesis testing problem. This article proposes to use deep learning models to perform such acquisition, whereby the CAF is fed to a data-driven classifier that outputs binary class posteriors. The class posteriors are used to compute a Bayesian hypothesis test to statistically decide the presence or absence of a GNSS signal.

View Article and Find Full Text PDF

This paper discusses asynchronous distributed inference in object tracking. Unlike many studies, which assume that the delay in communication between partial estimators and the central station is negligible, our study focuses on the problem of asynchronous distributed inference in the presence of delays. We introduce an efficient data fusion method for combining the distributed estimates, where delay in communications is not negligible.

View Article and Find Full Text PDF

With great potential for being applied to Internet of Things (IoT) applications, the concept of cloud-based Snapshot Real Time Kinematics (SRTK) was proposed and its feasibility under zero-baseline configuration was confirmed recently by the authors. This article first introduces the general workflow of the SRTK engine, as well as a discussion on the challenges of achieving an SRTK fix using actual snapshot data. This work also describes a novel solution to ensure a nanosecond level absolute timing accuracy in order to compute highly precise satellite coordinates, which is required for SRTK.

View Article and Find Full Text PDF

In this article, we provide closed-form approximations of log-likelihood ratio (LLR) values for direct sequence spread spectrum (DS-SS) systems over three particular scenarios, which are commonly found in the Global Navigation Satellite System (GNSS) environment. Those scenarios are the open sky with smooth variation of the signal-to-noise ratio (SNR), the additive Gaussian interference, and pulsed jamming. In most of the current communications systems, block-wise estimators are considered.

View Article and Find Full Text PDF

Global navigation satellite systems (GNSSs) play a key role in intelligent transportation systems such as autonomous driving or unmanned systems navigation. In such applications, it is fundamental to ensure a reliable precise positioning solution able to operate in harsh propagation conditions such as urban environments and under multipath and other disturbances. Exploiting carrier phase observations allows for precise positioning solutions at the complexity cost of resolving integer phase ambiguities, a procedure that is particularly affected by non-nominal conditions.

View Article and Find Full Text PDF

Brain computer interfaces (BCIs) are one of the developing technologies, serving as a communication interface for people with neuromuscular disorders. Electroencephalography (EEG) and gaze signals are among the commonly used inputs for the user intent classification problem arising in BCIs. Fusing different types of input modalities, i.

View Article and Find Full Text PDF

Navigation problems are generally solved applying least-squares (LS) adjustments. Techniques based on LS can be shown to perform optimally when the system noise is Gaussian distributed and the parametric model is accurately known. Unfortunately, real world problems usually contain unexpectedly large errors, so-called outliers, that violate the noise model assumption, leading to a spoiled solution estimation.

View Article and Find Full Text PDF

In Global Navigation Satellite System (GNSS), a spoofing attack consists of forged signals which possibly cause the attacked receivers to deduce a false position, a false clock, or both. In contrast to simplistic spoofing, the induced spoofing captures the victim tracking loops by gradually adjusting it's parameters, e.g.

View Article and Find Full Text PDF

Satellite-based navigation is prevalent in both commercial applications and critical infrastructures, providing precise position and time referencing. As a consequence, interference to such systems can have repercussions on a plethora of fields. Additionally, Privacy Preserving Devices (PPD)—jamming devices—are relatively inexpensive and easy to obtain, potentially denying the service in a wide geographical area.

View Article and Find Full Text PDF

Background: Influenza is a well known and common human respiratory infection, causing significant morbidity and mortality every year. Despite Influenza variability, fast and reliable outbreak detection is required for health resource planning. Clinical health records, as published by the Diagnosticat database in Catalonia, host useful data for probabilistic detection of influenza outbreaks.

View Article and Find Full Text PDF