Unlabelled: Wetlands cover a small portion of the world, but have disproportionate influence on global carbon (C) sequestration, carbon dioxide and methane emissions, and aquatic C fluxes. However, the underlying biogeochemical processes that affect wetland C pools and fluxes are complex and dynamic, making measurements of wetland C challenging. Over decades of research, many observational, experimental, and analytical approaches have been developed to understand and quantify pools and fluxes of wetland C.
View Article and Find Full Text PDFNature-based Climate Solutions (NbCS) are managed alterations to ecosystems designed to increase carbon sequestration or reduce greenhouse gas emissions. While they have growing public and private support, the realizable benefits and unintended consequences of NbCS are not well understood. At regional scales where policy decisions are often made, NbCS benefits are estimated from soil and tree survey data that can miss important carbon sources and sinks within an ecosystem, and do not reveal the biophysical impacts of NbCS for local water and energy cycles.
View Article and Find Full Text PDFC₁ metabolism in plants is known to be involved in photorespiration, nitrogen and amino acid metabolism, as well as methylation and biosynthesis of metabolites and biopolymers. Although the flux of carbon through the C₁ pathway is thought to be large, its intermediates are difficult to measure and relatively little is known about this potentially ubiquitous pathway. In this study, we evaluated the C₁ pathway and its integration with the central metabolism using aqueous solutions of C-labeled C₁ and C₂ intermediates delivered to branches of the tropical species via the transpiration stream.
View Article and Find Full Text PDF