Recently, a new genetic test has been developed that allows a more detailed examination of the genome when compared with a standard chromosome analysis. Array comparative genomic hybridization (CGH microarray; also known as chromosome microarray analysis) in effect, combines chromosome and fluorescence in situ hybridization analyses allowing detection not only of aneuploidies, but also of all known microdeletion and microduplication disorders, including telomere rearrangements. Since 2004, this testing has been available in the Medical Genetics Laboratory at Baylor College of Medicine for postnatal evaluation and diagnosis of individuals with suspected genomic disorders.
View Article and Find Full Text PDFWe report clinical findings and molecular cytogenetic analyses for two patients with translocations [t(14;17)(p12;p12) and t(15;17)(p12;p13.2)], in which the chromosome 17 breakpoints map at a large low-copy repeat (LCR) and a breakage-prone TRE-2 (USP6) oncogene, respectively. In family 1, a 6-year-old girl and her 5-year-old brother were diagnosed with mental retardation, short stature, dysmorphic features, and Charcot-Marie-Tooth disease type 1A (CMT1A).
View Article and Find Full Text PDFPurpose: We developed a microarray for clinical diagnosis of chromosomal disorders using large insert genomic DNA clones as targets for comparative genomic hybridization (CGH).
Methods: The array contains 362 FISH-verified clones that span genomic regions implicated in over 40 known human genomic disorders and representative subtelomeric clones for each of the 41 clinically relevant human chromosome telomeres. Three or four clones from almost all deletion or duplication genomic regions and three or more clones for each subtelomeric region were included.