Publications by authors named "Pattavina L"

Any experiment aiming to measure rare events, like Coherent Elastic neutrino-Nucleus Scattering (CE NS) or hypothetical Dark Matter scattering, via nuclear recoils in cryogenic detectors relies crucially on a precise detector calibration at sub-keV energies. The Crab collaboration developed a new calibration technique based on the capture of thermal neutrons inside the target crystal. Together with the Nucleus experiment, first measurements with a moderated Cf neutron source and a cryogenic detector were taken.

View Article and Find Full Text PDF

The Cryogenic Underground Observatory for Rare Events (CUORE) is a detector array comprised by 988 5  cm×5  cm×5  cm TeO_{2} crystals held below 20 mK, primarily searching for neutrinoless double-beta decay in ^{130}Te. Unprecedented in size among cryogenic calorimetric experiments, CUORE provides a promising setting for the study of exotic throughgoing particles. Using the first tonne year of CUORE's exposure, we perform a search for hypothesized fractionally charged particles (FCPs), which are well-motivated by various standard model extensions and would have suppressed interactions with matter.

View Article and Find Full Text PDF

Cryogenic phonon detectors with transition-edge sensors achieve the best sensitivity to sub-GeV/c dark matter interactions with nuclei in current direct detection experiments. In such devices, the temperature of the thermometer and the bias current in its readout circuit need careful optimization to achieve optimal detector performance. This task is not trivial and is typically done manually by an expert.

View Article and Find Full Text PDF

We report on the results obtained with the global CUPID-0 background model, which combines the data collected in the two measurement campaigns for a total exposure of 8.82  kg×yr of ^{82}Se. We identify with improved precision the background sources within the 3 MeV energy region, where neutrinoless double β decay of ^{82}Se and ^{100}Mo is expected, making more solid the foundations for the background budget of the next-generation CUPID experiment.

View Article and Find Full Text PDF

Neutrinoless double beta decay (0νββ) is a yet unobserved nuclear process that would demonstrate Lepton number violation, a clear evidence of beyond standard model physics. The process two neutrino double beta decay (2νββ) is allowed by the standard model and has been measured in numerous experiments. In this Letter, we report a measurement of 2νββ decay half-life of ^{100}Mo to the ground state of ^{100}Ru of [7.

View Article and Find Full Text PDF

Coherent elastic neutrino-nucleus scattering and low-mass dark matter detectors rely crucially on the understanding of their response to nuclear recoils. We report the first observation of a nuclear recoil peak at around 112 eV induced by neutron capture. The measurement was performed with a CaWO_{4} cryogenic detector from the NUCLEUS experiment exposed to a ^{252}Cf source placed in a compact moderator.

View Article and Find Full Text PDF

The CRESST experiment employs cryogenic calorimeters for the sensitive measurement of nuclear recoils induced by dark matter particles. The recorded signals need to undergo a careful cleaning process to avoid wrongly reconstructed recoil energies caused by pile-up and read-out artefacts. We frame this process as a time series classification task and propose to automate it with neural networks.

View Article and Find Full Text PDF

Core-collapse Supernovae (SNe) are one of the most energetic events in the Universe, during which almost all the star's binding energy is released in the form of neutrinos. These particles are direct probes of the processes occurring in the stellar core and provide unique insights into the gravitational collapse. RES-NOVA will revolutionize how we detect neutrinos from astrophysical sources, by deploying the first ton-scale array of cryogenic detectors made from archaeological lead.

View Article and Find Full Text PDF

CRESST is a leading direct detection sub-GeVc dark matter experiment. During its second phase, cryogenic bolometers were used to detect nuclear recoils off the CaWO target crystal nuclei. The previously established electromagnetic background model relies on Secular Equilibrium (SE) assumptions.

View Article and Find Full Text PDF

The Cryogenic Underground Observatory for Rare Events (CUORE) at Laboratori Nazionali del Gran Sasso of INFN in Italy is an experiment searching for neutrinoless double beta (0νββ) decay. Its main goal is to investigate this decay in ^{130}Te, but its ton-scale mass and low background make CUORE sensitive to other rare processes as well. In this Letter, we present our first results on the search for 0νββ decay of ^{128}Te, the Te isotope with the second highest natural isotopic abundance.

View Article and Find Full Text PDF

CUPID-0, an array of Zn^{82}Se cryogenic calorimeters, was the first medium-scale demonstrator of the scintillating bolometers' technology. The first project phase (March 2017-December 2018) allowed the most stringent limit on the neutrinoless double beta decay half-life of the isotope of interest, ^{82}Se, to be set. After a six month long detector upgrade, CUPID-0 began its second and last phase (June 2019-February 2020).

View Article and Find Full Text PDF

Localization and modeling of radioactive contaminations is a challenge that ultra-low background experiments are constantly facing. These are fundamental steps both to extract scientific results and to further reduce the background of the detectors. Here we present an innovative technique based on the analysis of delayed coincidences in Th and U decay chains, developed to investigate the contaminations of the ZnSe crystals in the CUPID-0 experiment.

View Article and Find Full Text PDF

The CUPID-Mo experiment at the Laboratoire Souterrain de Modane (France) is a demonstrator for CUPID, the next-generation ton-scale bolometric 0νββ experiment. It consists of a 4.2 kg array of 20 enriched Li_{2}^{100}MoO_{4} scintillating bolometers to search for the lepton-number-violating process of 0νββ decay in ^{100}Mo.

View Article and Find Full Text PDF

We measured two-neutrino double beta decay of ^{130}Te using an exposure of 300.7 kg yr accumulated with the CUORE detector. Using a Bayesian analysis to fit simulated spectra to experimental data, it was possible to disentangle all the major background sources and precisely measure the two-neutrino contribution.

View Article and Find Full Text PDF

We report new results from the search for neutrinoless double-beta decay in ^{130} Te with the CUORE detector. This search benefits from a fourfold increase in exposure, lower trigger thresholds, and analysis improvements relative to our previous results. We observe a background of (1.

View Article and Find Full Text PDF

We report on the measurement of the two-neutrino double-β decay of ^{82}Se performed for the first time with cryogenic calorimeters, in the framework of the CUPID-0 experiment. With an exposure of 9.95 kg yr of Zn^{82}Se, we determine the two-neutrino double-β decay half-life of ^{82}Se with an unprecedented precision level, T_{1/2}^{2ν}=[8.

View Article and Find Full Text PDF

The CRESST (Cryogenic Rare Event Search with Superconducting Thermometers) dark matter search experiment aims for the detection of dark matter particles via elastic scattering off nuclei in crystals. To understand the CRESST electromagnetic background due to the bulk contamination in the employed materials, a model based on Monte Carlo simulations was developed using the Geant4 simulation toolkit. The results of the simulation are applied to the TUM40 detector module of CRESST-II phase 2.

View Article and Find Full Text PDF

CUPID-0 is the first pilot experiment of CUPID, a next-generation project for the measurement of neutrinoless double beta decay (0νDBD) with scintillating bolometers. The detector, consisting of 24 enriched and 2 natural ZnSe crystals, has been taking data at Laboratori Nazionali del Gran Sasso from June 2017 to December 2018, collecting a ^{82}Se exposure of 5.29  kg×yr.

View Article and Find Full Text PDF

We report the result of the search for neutrinoless double beta decay of ^{82}Se obtained with CUPID-0, the first large array of scintillating Zn^{82}Se cryogenic calorimeters implementing particle identification. We observe no signal in a 1.83 kg yr ^{82}Se exposure, and we set the most stringent lower limit on the 0νββ ^{82}Se half-life T_{1/2}^{0ν}>2.

View Article and Find Full Text PDF

The CUORE experiment, a ton-scale cryogenic bolometer array, recently began operation at the Laboratori Nazionali del Gran Sasso in Italy. The array represents a significant advancement in this technology, and in this work we apply it for the first time to a high-sensitivity search for a lepton-number-violating process: ^{130}Te neutrinoless double-beta decay. Examining a total TeO_{2} exposure of 86.

View Article and Find Full Text PDF

The CUPID-0 detector hosted at the Laboratori Nazionali del Gran Sasso, Italy, is the first large array of enriched scintillating cryogenic detectors for the investigation of Se neutrinoless double-beta decay ( ). CUPID-0 aims at measuring a background index in the region of interest (RoI) for at the level of 10  counts/(keV kg years), the lowest value ever measured using cryogenic detectors. CUPID-0 operates an array of Zn Se scintillating bolometers coupled with bolometric light detectors, with a state of the art technology for background suppression and thorough protocols and procedures for the detector preparation and construction.

View Article and Find Full Text PDF

The CUPID-0 experiment searches for double beta decay using cryogenic calorimeters with double (heat and light) read-out. The detector, consisting of 24 ZnSe crystals 95 enriched in Se and two natural ZnSe crystals, started data-taking in 2017 at Laboratori Nazionali del Gran Sasso. We present the search for the neutrino-less double beta decay of Se into the 0 , 2 and 2 excited states of Kr with an exposure of 5.

View Article and Find Full Text PDF

The suppression of spurious events in the region of interest for neutrinoless double beta decay will play a major role in next generation experiments. The background of detectors based on the technology of cryogenic calorimeters is expected to be dominated by particles, that could be disentangled from double beta decay signals by exploiting the difference in the emission of the scintillation light. CUPID-0, an array of enriched Zn Se scintillating calorimeters, is the first large mass demonstrator of this technology.

View Article and Find Full Text PDF

This paper reports on the development of a technology involving -enriched scintillating bolometers, compatible with the goals of CUPID, a proposed next-generation bolometric experiment to search for neutrinoless double-beta decay. Large mass ( ), high optical quality, radiopure -containing zinc and lithium molybdate crystals have been produced and used to develop high performance single detector modules based on 0.2-0.

View Article and Find Full Text PDF