Publications by authors named "Pattamatta A"

In an era defined by an insatiable thirst for sustainable energy solutions, responsible water management, and cutting-edge lab-on-a-chip diagnostics, surface wettability plays a pivotal role in these fields. The seamless integration of fundamental research and the following demonstration of applications on these groundbreaking technologies hinges on manipulating fluid through surface wettability, significantly optimizing performance, enhancing efficiency, and advancing overall sustainability. This Review explores the behavior of liquids when they engage with engineered surfaces, delving into the far-reaching implications of these interactions in various applications.

View Article and Find Full Text PDF

Lattice distortions are intrinsic features of all solid solution alloys associated with varying atomic radii; this phenomenon facilitates the formation of single-phase solid solutions. Using high-entropy alloys (HEAs), as an example, we investigate the influence of variations in inter-atomic separations for stabilizing and controlling their structural, mechanical, and thermodynamic properties. This is done through a combination of statistical mechanics analysis and molecular dynamics simulations on simplified 2D systems, as well as a 3D crystals with harmonic and anharmonic inter-atomic bonds with varying natural inter-atomic separations.

View Article and Find Full Text PDF

Allotropic phase transformations may be driven by the application of stresses in many materials; this has been especially well-documented for pressure driven transformations. Recent advances in strengthening materials allow for the application of very large shear stresses as well - opening up vast new regions of stress space. This means that the stress space is six-dimensional (rather than one for pressure) and that phase transformations depend upon crystal/grain orientation.

View Article and Find Full Text PDF

C9orf72 ALS/FTD patients show remarkable clinical heterogeneity, but the complex biology of the repeat expansion mutation has limited our understanding of the disease. BAC transgenic mice were used to better understand the molecular mechanisms and repeat length effects of C9orf72 ALS/FTD. Genetic analyses of these mice demonstrate that the BAC transgene and not integration site effects cause ALS/FTD phenotypes.

View Article and Find Full Text PDF

Mordes et al. (2020) did not detect the survival or motor phenotypes in C9orf72 BAC transgenic mice originally described by Liu et al. (2016).

View Article and Find Full Text PDF

The intronic C9orf72 G4C2 expansion, the most common genetic cause of ALS and FTD, produces sense- and antisense-expansion RNAs and six dipeptide repeat-associated, non-ATG (RAN) proteins, but their roles in disease are unclear. We generated high-affinity human antibodies targeting GA or GP RAN proteins. These antibodies cross the blood-brain barrier and co-localize with intracellular RAN aggregates in C9-ALS/FTD BAC mice.

View Article and Find Full Text PDF

Microsatellite expansions cause more than 40 neurological disorders, including Huntington's disease, myotonic dystrophy, and C9ORF72 amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD). These repeat expansion mutations can produce epeat-ssociated on-ATG (RAN) proteins in all three reading frames, which accumulate in disease-relevant tissues. There has been considerable interest in RAN protein products and their downstream consequences, particularly for the dipeptide proteins found in ALS/FTD.

View Article and Find Full Text PDF

More than 40 different neurological diseases are caused by microsatellite repeat expansions that locate within translated or untranslated gene regions, including 5' and 3' untranslated regions (UTRs), introns, and protein-coding regions. Expansion mutations are transcribed bidirectionally and have been shown to give rise to proteins, which are synthesized from three reading frames in the absence of an AUG initiation codon through a novel process called repeat-associated non-ATG (RAN) translation. RAN proteins, which were first described in spinocerebellar ataxia type 8 (SCA8) and myotonic dystrophy type 1 (DM1), have now been reported in a growing list of microsatellite expansion diseases.

View Article and Find Full Text PDF

In 2011, an intronic (GC)•(GC) expansion was shown to cause the most common forms of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). This discovery linked ALS with a clinically distinct form of dementia and a larger group of microsatellite repeat diseases, and catalyzed basic and translational research.

View Article and Find Full Text PDF

Large-scale electrorheology (ER) response has been reported for dilute graphene nanoflake-based ER fluids that have been engineered as novel, readily synthesizable polymeric gels. Polyethylene glycol (PEG 400) based graphene gels have been synthesized and a very high ER response (∼125 000% enhancement in viscosity under influence of an electric field) has been observed for low concentration systems (∼2 wt.%).

View Article and Find Full Text PDF

To define how the C9orf72 GGGGCC expansion mutation causes ALS/FTD and to facilitate therapy development, a mouse model that recapitulates the molecular and phenotypic features of the disease is urgently needed. Two groups recently reported BAC mouse models that produce RNA foci and RAN proteins but, surprisingly, do not develop the neurodegenerative or behavioral features of ALS/FTD. We now report a BAC mouse model of C9orf72 ALS/FTD that shows decreased survival, paralysis, muscle denervation, motor neuron loss, anxiety-like behavior, and cortical and hippocampal neurodegeneration.

View Article and Find Full Text PDF

The capacity of the cell to produce, fold and degrade proteins relies on components of the proteostasis network. Multiple types of insults can impose a burden on this network, causing protein misfolding. Using thermal stress, a classic example of acute proteostatic stress, we demonstrate that ∼5-10% of the soluble cytosolic and nuclear proteome in human HEK293 cells is vulnerable to misfolding when proteostatic function is overwhelmed.

View Article and Find Full Text PDF

The primary objective of this study is to investigate the effect of slip mechanisms in nanofluids through scaling analysis. The role of nanoparticle slip mechanisms in both water- and ethylene glycol-based nanofluids is analyzed by considering shape, size, concentration, and temperature of the nanoparticles. From the scaling analysis, it is found that all of the slip mechanisms are dominant in particles of cylindrical shape as compared to that of spherical and sheet particles.

View Article and Find Full Text PDF