Publications by authors named "Patskovska L"

Article Synopsis
  • T cell receptors (TCR) play a crucial role in identifying and attacking tumor cells by recognizing unique neoantigens produced from mutations, but the details on how TCRs recognize these neoantigens are still unclear.
  • This study focuses on a specific neoantigen from B16F10 murine melanoma and its corresponding TCR, showing that a particular mutation improves the binding to MHC-I, enhancing the presentation on cell surfaces.
  • The TCR studied demonstrated strong binding and recognition capabilities, even in low antigen situations, highlighting the importance of molecular studies for understanding how neoantigens induce immune responses against cancer.
View Article and Find Full Text PDF
Article Synopsis
  • Altered protein phosphorylation in cancer cells can create neoantigens, but their role in cancer immunity is not well understood.
  • This study explores how a specific phosphoneoantigen, pMLL, is recognized by a T cell receptor (TCR27), which may be useful for cancer immunotherapy.
  • Findings indicate that substituting phosphoserine affects TCR27’s ability to activate T cells, underscoring the importance of phosphate interactions for TCR specificity and potential new treatment strategies.
View Article and Find Full Text PDF
Article Synopsis
  • - Understanding how T cell receptors (TCRs) interact with tumor neoantigens (neoAg) presented by MHC-I is crucial for effective immunotherapy against cancer.
  • - Researchers identified a high-affinity TCR that specifically targets a neoAg from the B16F10 melanoma model, which showed strong recognition of tumor cells.
  • - The structural analysis of the TCR and peptide-MHC complexes revealed similarities to known viral peptide interactions, suggesting that both neoantigens and viral peptides may share common features that influence their ability to trigger immune responses.
View Article and Find Full Text PDF

We report the discovery of a new potent allosteric effector of sickle cell hemoglobin, GBT440 (), that increases the affinity of hemoglobin for oxygen and consequently inhibits its polymerization when subjected to hypoxic conditions. Unlike earlier allosteric activators that bind covalently to hemoglobin in a 2:1 stoichiometry, binds with a 1:1 stoichiometry. Compound is orally bioavailable and partitions highly and favorably into the red blood cell with a RBC/plasma ratio of ∼150.

View Article and Find Full Text PDF

A major driver of the pathophysiology of sickle cell disease (SCD) is polymerization of deoxygenated haemoglobin S (HbS), which leads to sickling and destruction of red blood cells (RBCs) and end-organ damage. Pharmacologically increasing the proportion of oxygenated HbS in RBCs may inhibit polymerization, prevent sickling and provide long term disease modification. We report that GBT440, a small molecule which binds to the N-terminal α chain of Hb, increases HbS affinity for oxygen, delays in vitro HbS polymerization and prevents sickling of RBCs.

View Article and Find Full Text PDF

An active site His107 residue distinguishes human glutathione S-transferase hGSTM1-1 from other mammalian Mu-class GSTs. The crystal structure of hGSTM1a-1a with bound glutathione (GSH) was solved to 1.9 A resolution, and site-directed mutagenesis supports the conclusion that a proton transfer occurs in which bound water at the catalytic site acts as a primary proton acceptor from the GSH thiol group to transfer the proton to His107.

View Article and Find Full Text PDF

Human hemoglobin binds oxygen cooperatively and functions as a tetramer composed of two identical alphabeta heterodimers. While human hemoglobin is the best characterized allosteric protein, the quaternary R (oxygenated or liganded) to T (deoxygenated) structural transition remains controversial. The R2 state has been postulated to represent either an intermediate or final quaternary state elicited by ligand binding.

View Article and Find Full Text PDF

Previous studies have demonstrated that in vitro crystallization of R-state liganded hemoglobin C (HbC), a naturally occurring mutant human hemoglobin (betaE6K), in high-phosphate buffer solutions provides a potential model system for the intracellular crystallization of HbC associated with chronic hemolytic anemia in CC disease. The first high-resolution crystal structure of liganded HbC is reported here. HbC was crystallized from high phosphate and the structure of the carbonmonoxy-liganded R-state form was refined at 2.

View Article and Find Full Text PDF

A series of chimeric human Mu class glutathione S-transferases were designed to determine mechanisms by which they activate enzyme-bound glutathione (GSH) for reaction with electrophilic substrates. In view of evidence that the His(107) residue of hGSTM1a-1a is important for catalysis (Patskovsky, Y. V.

View Article and Find Full Text PDF

The hGSTM3 subunit, which is preferentially expressed in germ-line cells, has the greatest sequence divergence among the human mu class glutathione S-transferases. To determine a structural basis for the catalytic differences between hGSTM3-3 and other mu class enzymes, chimeric proteins were designed by modular interchange of the divergent C-terminal domains of hGSTM3 and hGSTM5 subunits. Replacement of 24 residues of the C-terminal segment of either subunit produced chimeric enzymes with catalytic properties that reflected those of the wild-type enzyme from which the C-terminus had been derived.

View Article and Find Full Text PDF

Domain interchange analyses and site-directed mutagenesis indicate that the His107 residue of the human subunit hGSTM1 has a pronounced influence on catalysis of nucleophilic aromatic substitution reactions, and a H107S substitution accounts for the marked differences in the properties of the homologous hGSTM1-1 (His107) and hGSTM4-4 (Ser107) glutathione S-transferases. Reciprocal replacement of His107 and Ser107 in chimeric enzymes results in reciprocal conversion of catalytic properties. With 1-chloro-2, 4-dinitrobenzene as a substrate, the His107 residue primarily influences the pH dependence of catalysis by lowering the apparent pKa of kcat/Km from 7.

View Article and Find Full Text PDF

Human glutathione-S-transferase M2-2 (hGSTM2-2) was expressed in Escherichia coli and purified by GSH-affinity chromatography. The recombinant enzyme and the protein isolated from human tissue were indistinguishable based on physicochemical, enzymatic and immunological criteria. The catalytically active dimeric hGSTM2-2 was crystallized without GSH or other active-site ligands in two crystal forms.

View Article and Find Full Text PDF

A rat testicular Mu-class glutathione S-transferase (GST) resolved by reversed-phase high performance liquid chromatography cross-reacted with peptide sequence-specific antisera raised against the human hGSTM3 subunit. Electrospray ionization mass spectrometry indicated that this rat GST subunit (designated rGSTM5 in this report) has a significantly greater molecular mass (26,541 Da) than the other rat GST subunits. The mouse homologue (mGSTM5 subunit) was also identified and characterized by high performance liquid chromatography and electrospray ionization mass spectrometry.

View Article and Find Full Text PDF