A model for a monolayer of two types of particles spontaneously forming ordered patterns is studied using a mesoscopic theory and MC simulations. We assume hard-cores of the same size for both components. For > , like particles attract and repel each other at short and large distances, respectively, with the same potential () for both species, and the cross-interaction is -().
View Article and Find Full Text PDFA mesoscopic theory for water-in-salt electrolytes combining density functional and field-theoretic methods is developed in order to explain the unexpectedly large period of the oscillatory decay of the disjoining pressure observed in recent experiments for the lithium bis(trifluoromethylsulfonyl)-imide (LiTFSI) salt [T. S. Groves et al.
View Article and Find Full Text PDFJ Phys Condens Matter
July 2021
Self-consistent theory for concentrated electrolytes is developed. Oscillatory decay of the charge-charge correlation function with the decay length that shows perfect agreement with the experimentally discovered and so far unexplained scaling is obtained. For the density-density correlations, monotonic asymptotic decay with the decay length comparable with the decay length of the charge correlations is found.
View Article and Find Full Text PDFA binary mixture of particles interacting with spherically-symmetrical potentials leading to microsegregation is studied by theory and molecular dynamics (MD) simulations. We consider spherical particles with equal diameters and volume fractions. Motivated by the mixture of oppositely charged particles with different adsorption preferences immersed in a near-critical binary solvent, we assume short-range attraction long-range repulsion for the interaction between like particles, and short-range repulsion long-range attraction for the interaction between different ones.
View Article and Find Full Text PDFWe develop a theory based on the method of collective variables to study the vapor-liquid equilibrium of asymmetric ionic fluids confined in a disordered porous matrix. The approach allows us to formulate the perturbation theory using an extension of the scaled particle theory for a description of a reference system presented as a two-component hard-sphere fluid confined in a hard-sphere matrix. Treating an ionic fluid as a size- and charge-asymmetric primitive model (PM) we derive an explicit expression for the relevant chemical potential of a confined ionic system which takes into account the third-order correlations between ions.
View Article and Find Full Text PDFJ Phys Condens Matter
October 2016
We study the vapour-liquid phase behaviour of an ionic fluid confined in a random porous matrix formed by uncharged hard sphere particles. The ionic fluid is modelled as an equimolar binary mixture of oppositely charged equisized hard spheres, the so-called restricted primitive model (RPM). Considering the matrix-fluid system as a partly-quenched model, we develop a theoretical approach which combines the method of collective variables with the extension of the scaled-particle theory (SPT) for a hard-sphere fluid confined in a disordered hard-sphere matrix.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
June 2014
We study the effects of an interaction range on the gas-liquid phase diagram and the crossover behavior of a simple model of ionic fluids: an equimolar binary mixture of equisized hard spheres interacting through screened Coulomb potentials which are repulsive between particles of the same species and attractive between particles of different species. Using the collective variables theory, we find explicit expressions for the relevant coefficients of the effective φ{4} Ginzburg-Landau Hamiltonian in a one-loop approximation. Within the framework of this approximation, we calculate the critical parameters and gas-liquid phase diagrams for varying inverse screening length z.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
August 2013
The effect of the Coulomb interactions on the crossover between mean-field and Ising critical behavior in ionic fluids is studied using the Ginzburg criterion. We consider the charge-asymmetric primitive model supplemented by short-range attractive interactions in the vicinity of the gas-liquid critical point. The model without Coulomb interactions exhibiting typical Ising critical behavior is used to calibrate the Ginzburg temperature of the systems comprising electrostatic interactions.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
September 2012
Effects of size and charge asymmetry between oppositely charged ions or particles on spatial inhomogeneities are studied for a large range of charge and size ratios. We perform a stability analysis of the primitive model of ionic systems with respect to periodic ordering using the collective variables-based theory. We extend previous studies [Ciach et al.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
March 2010
The effects of size and charge asymmetry on the gas-liquid critical parameters of a primitive model (PM) of ionic fluids are studied within the framework of the statistical field theory based on the collective variables method. Recently, this approach has enabled us to obtain the correct trends of the both critical parameters of the equisize charge-asymmetric PM without assuming ionic association. In this paper, we focus on the general case of an asymmetric PM characterized by the two parameters: hard-sphere diameter, lambda=sigma+/sigma-, and charge, z=q+/|q-|, ratios of the two ionic species.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
August 2006
Effects of charge-density fluctuations on a phase behavior of the restricted primitive model are studied within a field-theoretic formalism. We focus on a lambda line of continuous transitions between charge-ordered and charge-disordered phases that is observed in several mean-field theories, but is absent in simulation results. In our study the RPM is reduced to a phi(6) theory, and a fluctuation contribution to a grand thermodynamic potential is obtained by generalizing the Brazovskii approach.
View Article and Find Full Text PDFJ Phys Condens Matter
June 2005
The correlation functions of an ionic fluid with charge and size asymmetry are studied within the framework of the random phase approximation. The results obtained for the charge-charge correlation function demonstrate that the second-moment Stillinger-Lovett (SL) rule is satisfied away from the gas-liquid critical point (CP) but not, in general, at the CP. However, in the special case of a model without size asymmetry the SL rules are satisfied even at the CP.
View Article and Find Full Text PDF