This paper presents a novel algorithm to dock a non-holonomic Autonomous Underwater Vehicle (AUV) into a funnel-shaped Docking Station (DS), in the presence of ocean currents. In a previous work, the authors have compared several docking algorithms through Monte Carlo simulations. In this paper, a new control algorithm is presented with a goal to improve over the previous ones to fulfil the specific needs of the ATLANTIS project.
View Article and Find Full Text PDFExploration of marine habitats is one of the key pillars of underwater science, which often involves collecting images at close range. As acquiring imagery close to the seabed involves multiple hazards, the safety of underwater vehicles, such as remotely operated vehicles (ROVs) and autonomous underwater vehicles (AUVs), is often compromised. Common applications for obstacle avoidance in underwater environments are often conducted with acoustic sensors, which cannot be used reliably at very short distances, thus requiring a high level of attention from the operator to avoid damaging the robot.
View Article and Find Full Text PDF