Publications by authors named "Patrycja Skut"

Article Synopsis
  • Scientists studied how tick bites affect skin to understand diseases caused by ticks.
  • They found many genes that behaved differently in skin right after a tick bite compared to skin taken later, showing how the body reacts over time.
  • The research could help identify markers to predict how a person will respond to tick bites and help with treatments in the future.
View Article and Find Full Text PDF

Neonatal sepsis is a major cause of childhood mortality. Limited diagnostic tools and mechanistic insights have hampered our abilities to develop prophylactic or therapeutic interventions. Biomarkers in human neonatal sepsis have been repeatedly identified as associated with dysregulation of angiopoietin signaling and altered arachidonic acid metabolism.

View Article and Find Full Text PDF

The bone marrow microenvironment (BMM) plays a key role in leukemia progression, but its molecular complexity in pre-B cell acute lymphoblastic leukemia (B-ALL), the most common cancer in children, remains poorly understood. To gain further insight, we used single-cell RNA sequencing to characterize the kinetics of the murine BMM during B-ALL progression. Normal pro- and pre-B cells were found to be the most affected at the earliest stages of disease and this was associated with changes in expression of genes regulated by the AP1-transcription factor complex and regulatory factors NELFE, MYC and BCL11A.

View Article and Find Full Text PDF

Amsacrine, which inhibits eukaryotic type II topoisomerase via DNA intercalation and stabilization of the cleavable topoisomerase-DNA complex, promotes DNA damage and eventually cell death. Amsacrine has also been shown to inhibit structurally distinct bacterial type I topoisomerases (TopAs), including mycobacterial TopA, the only and essential topoisomerase I in . Here, we describe the modifications of an amsacrine sulfonamide moiety that presumably interacts with mycobacterial TopA, which notably increased the enzyme inhibition and drug selectivity .

View Article and Find Full Text PDF

The microenvironments of leukemia and cancer are critical for multiple stages of malignancies, and they are an attractive therapeutic target. While skeletal abnormalities are commonly seen in children with acute lymphoblastic leukemia (ALL) prior to initiating osteotoxic therapy, little is known about the alterations to the bone marrow microenvironment during leukemogenesis. Therefore, in this study, we focused on the development of precursor-B cell ALL (pre-B ALL) in an immunocompetent BCR-ABL1 model.

View Article and Find Full Text PDF

The excessive and often unreasonable use of antibacterial drugs leads to rise of antibioticresistant strains. To overcome this problem, new antibiotics are searched and the new drug targets are investigated. The proteins involved in replication of bacterial chromosomes seem to be promising candidates for drug targets since they are involved in crucial life pathways and are structurally and/or functionally different from the eukaryotic homologues.

View Article and Find Full Text PDF

Streptomyces species are bacteria that resemble filamentous fungi in their hyphal mode of growth and sporulation. In Streptomyces coelicolor, the conversion of multigenomic aerial hyphae into chains of unigenomic spores requires synchronized septation accompanied by segregation of tens of chromosomes into prespore compartments. The chromosome segregation is dependent on ParB protein, which assembles into an array of nucleoprotein complexes in the aerial hyphae.

View Article and Find Full Text PDF