Leukaemia is caused by the clonal evolution of a cell that accumulates mutations/genomic rearrangements, allowing unrestrained cell growth. However, recent identification of leukaemic mutations in the blood cells of healthy individuals revealed that additional events are required to expand the mutated clones for overt leukaemia. Here, we assessed the functional consequences of deleting the Fanconi anaemia A (Fanca) gene, which encodes a DNA damage response protein, in Spi1 transgenic mice that develop preleukaemic syndrome.
View Article and Find Full Text PDFDNA damage and genomic instability contribute to non-small cell lung cancer (NSCLC) etiology and progression. However, their therapeutic exploitation is disappointing. CTC-derived explants (CDX) offer systems for mechanistic investigation of CTC metastatic potency and may provide rationale for biology-driven therapeutics.
View Article and Find Full Text PDFGatekeeper mutations are identified in only 50% of the cases at resistance to Anaplastic Lymphoma Kinase (ALK)-tyrosine kinase inhibitors (TKIs). Circulating tumor cells (CTCs) are relevant tools to identify additional resistance mechanisms and can be sequenced at the single-cell level. Here, we provide in-depth investigation of copy number alteration (CNA) heterogeneity in phenotypically characterized CTCs at resistance to ALK-TKIs in ALK-positive non-small cell lung cancer.
View Article and Find Full Text PDFCirculating tumor cells (CTCs) provide an accessible tool for investigating tumor heterogeneity and cell populations with metastatic potential. Although an in-depth molecular investigation is limited by the extremely low CTC count in circulation, significant progress has been made recently in single-cell analytical processes. Indeed, CTC monitoring through molecular and functional characterization may provide an understanding of genomic instability (GI) molecular mechanisms, which contribute to tumor evolution and emergence of resistant clones.
View Article and Find Full Text PDFHematopoietic stem cell (HSC) attrition is considered the key event underlying progressive BM failure (BMF) in Fanconi anemia (FA), the most frequent inherited BMF disorder in humans. However, despite major advances, how the cellular, biochemical, and molecular alterations reported in FA lead to HSC exhaustion remains poorly understood. Here, we demonstrated in human and mouse cells that loss-of-function of FANCA or FANCC, products of 2 genes affecting more than 80% of FA patients worldwide, is associated with constitutive expression of the transcription factor microphthalmia (MiTF) through the cooperative, unscheduled activation of several stress-signaling pathways, including the SMAD2/3, p38 MAPK, NF-κB, and AKT cascades.
View Article and Find Full Text PDFMetastasis is the main cause of cancer-related death owing to the blood-borne dissemination of circulating tumor cells (CTCs) early in the process. A rare fraction of CTCs harboring a stem cell profile and tumor initiation capacities is thought to possess the clonogenic potential to seed new lesions. The highest plasticity has been generally attributed to CTCs with a partial epithelial-to-mesenchymal transition (EMT) phenotype, demonstrating a large heterogeneity among these cells.
View Article and Find Full Text PDFGrowing evidences for tumor heterogeneity confirm that single-tumor biopsies frequently fail to reveal the widespread mutagenic profile of tumor. Repeated biopsies are in most cases unfeasible, especially in advanced cancers. We describe here how circulating tumor cells (CTCs) isolated from minimally invasive blood sample might inform us about intratumor heterogeneity, tumor evolution and treatment resistance.
View Article and Find Full Text PDFsomatic mutations occur in ∼10% of diffuse large B-cell lymphomas (DLBCL) but are of unknown significance. Herein, we show that TET2 is required for the humoral immune response and is a DLBCL tumor suppressor. TET2 loss of function disrupts transit of B cells through germinal centers (GC), causing GC hyperplasia, impaired class switch recombination, blockade of plasma cell differentiation, and a preneoplastic phenotype.
View Article and Find Full Text PDFThe gene encodes an α-ketoglutarate-dependent dioxygenase able to oxidize 5-methylcytosine into 5-hydroxymethylcytosine, which is a step toward active DNA demethylation. is frequently mutated in myeloid malignancies but also in B- and T-cell malignancies. somatic mutations are also identified in healthy elderly individuals with clonal hematopoiesis.
View Article and Find Full Text PDFPrimary Ovarian Insufficiency (POI) affects ~1% of women under forty. Exome sequencing of two Finnish sisters with non-syndromic POI revealed a homozygous mutation in leading to a truncated protein (p.Gln1701*).
View Article and Find Full Text PDFB-lymphocytes in the bone marrow (BM) must generate a functional B-cell receptor and overcome the negative selection induced by reactivity with autoantigens. Two rounds of DNA recombination are required for the production of functional immunoglobulin heavy (Ig-HCs) and light (LCs) chains necessary for the continuation of B-lymphocyte development in the BM. Both rounds depend on the joint action of recombination activating gene-1 (RAG-1) and RAG-2 endonucleases with the DNA non-homologous end-joining pathway.
View Article and Find Full Text PDFProteins involved in genetic stability maintenance and safeguarding DNA replication act not only against cancer initiation but could also play a major role in sustaining cancer progression. Here, we report that the FANC pathway is highly expressed in metastatic melanoma harboring the oncogenic microphthalmia-associated transcription factor (MiTF). We show that MiTF downregulation in melanoma cells lowers the expression of several FANC genes and proteins.
View Article and Find Full Text PDFFanconi anemia (FA) is an inherited chromosomal instability syndrome that is characterized by progressive bone marrow failure. One of the main causes of morbidity and mortality in FA is a bleeding tendency, resulting from low platelet counts. Platelets are the final products of megakaryocyte (MK) maturation.
View Article and Find Full Text PDFLoss of hematopoietic stem cell (HSC) function and increased risk of developing hematopoietic malignancies are severe and concerning complications of anticancer radiotherapy and chemotherapy. We have previously shown that thrombopoietin (TPO), a critical HSC regulator, ensures HSC chromosomal integrity and function in response to γ-irradiation by regulating their DNA-damage response. TPO directly affects the double-strand break (DSB) repair machinery through increased DNA-protein kinase (DNA-PK) phosphorylation and nonhomologous end-joining (NHEJ) repair efficiency and fidelity.
View Article and Find Full Text PDFDNA double-strand breaks (DSBs) represent a serious threat for hematopoietic stem cells (HSCs). How cytokines and environmental signals integrate the DNA damage response and contribute to HSC-intrinsic DNA repair processes remains unknown. Thrombopoietin (TPO) and its receptor, Mpl, are critical factors supporting HSC self-renewal and expansion.
View Article and Find Full Text PDFSerum erythropoietin level less than 100U/L and a transfusion requirement of less than 2 units per month are the best predictive factors for response to treatment by erythropoiesis-stimulating agents in low/int-1 myelodysplastic syndromes. To investigate the factors influencing the response to erythropoiesis-stimulating agents, we enrolled 127 low/int-1 myelodysplastic syndrome patients at diagnosis in a biological study of erythropoiesis. The 54 non-responders had a significantly lower number of burst-forming unit-erythroid and colony-forming unit-erythroid than responders.
View Article and Find Full Text PDFThe aim of this study was to investigate the evolution of the abundance of cytochrome oxidase c subunit IV (NCOIV) and beta subunit of ATP synthase (β-ATP) during the last third of gestation in bovine skeletal muscles. Semitendinosus, longissimus thoracis and rectus abdominis muscles were chosen for the immunoblotting of the respective protein levels. Muscle and blood samples from bovine fetuses of randomly selected breeds were collected at 180, 210, and 260 days post-conception (dpc).
View Article and Find Full Text PDFPostepy Biochem
September 2007
Mitochondria play crucial role in the energetic metabolism, thermogenesis, maintenance of calcium homeostasis and apoptosis. Cyclic changes in fusion and fission of mitochondria are required for properly functioning organelles, especially in tissues with high dependence on energy supply such as skeletal muscles, heart, or neurons. The key role of mitochondrial fusion is observed in embryonic development and maintaining unchanged mtDNA pool under conditions of oxidative stress.
View Article and Find Full Text PDFWe have previously shown that mitochondrial activity increases in response to insulin in differentiating muscle cells. Moreover, the protein kinase kinase/extracellular-signal-regulated kinase (MAPKK/ERK-MEK) inhibitor PD98059 accelerates insulin-mediated myogenesis, whereas the phosphatidylinositol 3-kinase (PI3-K) inhibitor LY294002 or blockade of mitochondrial respiration abrogates insulin-mediated myogenesis. Our present study focuses on the mitochondrial transmembrane protein, hyperplasia suppressor gene/mitofusin2 (HSG/Mfn2), which regulates both mitochondrial fusion (as demonstrated by perinuclear mitochondria clustering) and insulin-dependent myogenesis in vitro.
View Article and Find Full Text PDFViability and myogenesis from C2C12 muscle cells and L6 rat myoblasts were dose-dependently stimulated by insulin. The metabolic inhibitors of phosphatidyl-inositol-3-kinase (PI-3K, LY294002) and of MAPKK/ERK kinase (MEK, PD98059) differently affected insulin-stimulated myogenesis of the cells. After LY294002 and PD98059 treatment, viability deteriorated and apparently an additive effect of both metabolic inhibitors was observed, irrespective of the method of measurement (neutral red or MTT assay).
View Article and Find Full Text PDFPreviously, we reported that mitogenicity in L6 muscle cells was stimulated by insulin but inhibited by reactive oxygen/nitrogen species (ROS/RNS; []) and that preincubation with sodium ascorbate (ASC) protected from either the impaired DNA synthesis and/or loss of cell viability. Now, we addressed the question how ascorbate (AA) rescued DNA synthesis in L6 muscle cells being challenged with ROS/RNS. We assumed that AA might be able to influence insulin signaling.
View Article and Find Full Text PDF