Publications by authors named "Patrycja Kowalek"

Deviations from Brownian motion leading to anomalous diffusion are found in transport dynamics from quantum physics to life sciences. The characterization of anomalous diffusion from the measurement of an individual trajectory is a challenging task, which traditionally relies on calculating the trajectory mean squared displacement. However, this approach breaks down for cases of practical interest, e.

View Article and Find Full Text PDF

Single-particle tracking (SPT) has become a popular tool to study the intracellular transport of molecules in living cells. Inferring the character of their dynamics is important, because it determines the organization and functions of the cells. For this reason, one of the first steps in the analysis of SPT data is the identification of the diffusion type of the observed particles.

View Article and Find Full Text PDF

Single-particle trajectories measured in microscopy experiments contain important information about dynamic processes occurring in a range of materials including living cells and tissues. However, extracting that information is not a trivial task due to the stochastic nature of the particles' movement and the sampling noise. In this paper, we adopt a deep-learning method known as a convolutional neural network (CNN) to classify modes of diffusion from given trajectories.

View Article and Find Full Text PDF