Publications by authors named "Patrizia Vinciguerra"

Transcription activation of some yeast genes correlates with their repositioning to the nuclear pore complex (NPC). The NPC-bound Mlp1 and Mlp2 proteins have been shown to associate with the GAL1 gene promoter and to maintain Ulp1, a key SUMO protease, at the NPC. Here, we show that the release of Ulp1 from the NPC increases the kinetics of GAL1 derepression, whereas artificial NPC anchoring of Ulp1 in the Δmlp1/2 strain restores normal GAL1 regulation.

View Article and Find Full Text PDF

The USP1/UAF1 complex deubiquitinates the Fanconi anemia protein FANCD2, thereby promoting homologous recombination and DNA cross-link repair. How USP1/UAF1 is targeted to the FANCD2/FANCI heterodimer has remained unknown. Here we show that UAF1 contains a tandem repeat of SUMO-like domains in its C terminus (SLD1 and SLD2).

View Article and Find Full Text PDF

Fanconi anemia (FA) is a genomic instability disorder characterized by bone marrow failure and cancer predisposition. FA is caused by mutations in any one of several genes that encode proteins cooperating in a repair pathway and is required for cellular resistance to DNA crosslinking agents. Recent studies suggest that the FA pathway may also play a role in mitosis, since FANCD2 and FANCI, the 2 key FA proteins, are localized to the extremities of ultrafine DNA bridges (UFBs), which link sister chromatids during cell division.

View Article and Find Full Text PDF

The evolutionarily conserved mRNA export receptor Mex67/NXF1 associates with mRNAs through its adaptor, Yra1/REF, allowing mRNA ribonucleoprotein (mRNP) exit through nuclear pores. However, alternate adaptors should exist, since Yra1 is dispensable for mRNA export in Drosophila and Caenorhabditis elegans. Here we report that Mex67 interacts directly with Nab2, an essential shuttling mRNA-binding protein required for export.

View Article and Find Full Text PDF

In this issue of Molecular Cell, Deans and West (2009) reveal the molecular basis of the phenotypic similarities between Fanconi Anemia (FA) and Bloom's Syndrome, identifying FANCM as the anchor for both FA and Bloom's complexes at the site of the DNA interstrand crosslink.

View Article and Find Full Text PDF

All cells rely on DNA polymerases to duplicate their genetic material and to repair or bypass DNA lesions. In humans, 16 polymerases have been identified, and each bears specific functions in genome maintenance. We identified here the recently discovered polymerase POLN to be involved in repair of DNA cross-links.

View Article and Find Full Text PDF

Fanconi anemia (FA) is a developmental and cancer-predisposition syndrome caused by mutations in genes controlling DNA interstrand crosslink repair. Several FA proteins form a ubiquitin ligase that controls monoubiquitination of the FANCD2 protein in an ATR-dependent manner. Here we describe the FA protein FANCI, identified as an ATM/ATR kinase substrate required for resistance to mitomycin C.

View Article and Find Full Text PDF

The mRNA export adaptor Yra1p/REF contributes to nascent mRNP assembly and recruitment of the export receptor Mex67p. yra1 mutants exhibit mRNA export defects and a decrease in LacZ reporter and certain endogenous transcripts. The loss of Mlp1p/Mlp2p, two TPR-like proteins attached to nuclear pores, rescues LacZ mRNA levels and increases their appearance in the cytoplasm, without restoring bulk poly(A)+ RNA export.

View Article and Find Full Text PDF

mRNAs are transported from the nucleus to the cytoplasm by a machinery conserved from yeast to humans. Previous studies showed that mRNA export factors are loaded on nascent mRNAs during elongation, coupling transcription to export. More recently identified mRNA export factors connect transcription initiation to the export machinery associated with nuclear pores, and potentially tether active genes to the nuclear periphery.

View Article and Find Full Text PDF

Yra1p/REF participates in mRNA export by recruiting the export receptor Mex67p to messenger ribonucleoprotein (mRNP) complexes. Yra1p also binds Sub2p, a DEAD box ATPase/RNA helicase implicated in splicing and required for mRNA export. We identified genetic and physical interactions between Yra1p, Sub2p, and Hpr1p, a protein involved in transcription elongation whose deletion leads to poly(A)(+) RNA accumulation in the nucleus.

View Article and Find Full Text PDF