Haematopoietic cells and platelets employ G-protein-coupled receptors (GPCRs) to sense extracellular information and respond by initiating integrin-mediated adhesion. So far, such processes have not been demonstrated in non-haematopoietic cells. Here, we report that the activation of protease-activated receptors PAR1 and PAR2 induce multiple signalling pathways to establish αβ-integrin-mediated adhesion.
View Article and Find Full Text PDFG protein-coupled receptors (GPCRs) show complex relationships between functional states and conformational plasticity that can be qualitatively and quantitatively described by contouring their free energy landscape. However, how ligands modulate the free energy landscape to direct conformation and function of GPCRs is not entirely understood. Here, we employ single-molecule force spectroscopy to parametrize the free energy landscape of the human protease-activated receptor 1 (PAR1), and delineate the mechanical, kinetic, and energetic properties of PAR1 being set into different functional states.
View Article and Find Full Text PDFG protein-coupled receptors (GPCRs) relay extracellular information across cell membranes through a continuum of conformations that are not always captured in structures. Hence, complementary approaches are required to quantify the physical and chemical properties of the dynamic conformations linking to GPCR function. Atomic force microscopy (AFM)-based high-resolution imaging and force spectroscopy are unique methods to scrutinize GPCRs and to sense their interactions.
View Article and Find Full Text PDFThe protease-activated receptor 1 (PAR1), a G protein-coupled receptor (GPCR) involved in hemostasis, thrombosis, and inflammation, is activated by thrombin or other coagulation proteases. This activation is inhibited by the irreversible antagonist vorapaxar used for anti-platelet therapy. Despite detailed structural and functional information, how vorapaxar binding alters the structural properties of PAR1 to prevent activation is hardly known.
View Article and Find Full Text PDFWhile providing the ability to magnetically enhance delivery rates, ferrogels have not been able to produce the various types of regulated delivery profiles likely needed to direct complex biological processes. For example, magnetically triggered release after prolonged periods of payload retention have not been demonstrated and little has been accomplished towards remotely controlling release rate through alterations in the magnetic signal. Also, strategies do not exist for magnetically coordinating multi-drug sequences.
View Article and Find Full Text PDFImaging native membrane receptors and testing how they interact with ligands is of fundamental interest in the life sciences but has proven remarkably difficult to accomplish. Here, we introduce an approach that uses force-distance curve-based atomic force microscopy to simultaneously image single native G protein-coupled receptors in membranes and quantify their dynamic binding strength to native and synthetic ligands. We measured kinetic and thermodynamic parameters for individual protease-activated receptor-1 (PAR1) molecules in the absence and presence of antagonists, and these measurements enabled us to describe PAR1's ligand-binding free-energy landscape with high accuracy.
View Article and Find Full Text PDF