Transparent corrole grafted-chitosan films were prepared by chemical modification of chitosan with a corrole macrocycle, namely, 5,10,15-tris(pentafluorophenyl)corrole (TPFC), followed by solvent casting. The obtained films were characterized in terms of absorption spectra (UV-vis), FLIM (fluorescence lifetime imaging microscopy), structure (FTIR, XPS), thermal stability (TGA), thermomechanical properties (DMA), and antibacterial activity. The results showed that the chemical grafting of chitosan with corrole units did not affect its film-forming ability and that the grafting yield increased with the reaction time.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
December 2014
Nanofibrillated cellulose (NFC) and their derivatives were prepared using three chemical surface modification strategies. All grafting was characterized by FTIR and contact angle measurements in order to evaluate the efficiency of grafting. Antibacterial activities of neat and grafted samples were investigated against two kinds of bacteria (i.
View Article and Find Full Text PDFThe design of cheap and safe antibacterial materials for widespread use has been a challenge in materials science. The use of copper nanostructures combined with abundant biopolymers such as cellulose offers a potential approach to achieve such materials though this has been less investigated as compared to other composites. Here, nanocomposites comprising copper nanofillers in cellulose matrices have been prepared by in situ and ex situ methods.
View Article and Find Full Text PDFThere has been a great deal of interest in the use of nanostructured bacterial cellulose membranes for biomedical applications, including tissue implants, wound healing, and drug delivery. However, as bacterial cellulose does not intrinsically present antimicrobial properties, in the present study, antimicrobial bacterial cellulose membranes were obtained by chemical grafting of aminoalkyl groups onto the surface of its nanofibrillar network. This approach intends to mimic intrinsic antimicrobial properties of chitosan.
View Article and Find Full Text PDFColloidal silver nanoparticles (NPs) were prepared using the citrate and borohydride reduction methods and were then investigated as fillers in three matrices: unmodified chitosan, water-soluble chitosan and a N-alkyl chitosan derivative. The nanocomposites were used to prepare cast thin films (9-19 μm thickness) and characterized for their optical and antimicrobial properties. The optical properties of the materials were adjusted either by varying the Ag NPs content in the films (0.
View Article and Find Full Text PDFCellulose/Ag nanocomposites were prepared using two distinct methodologies and two cellulose substrates: vegetable and bacterial cellulose. These nanocomposites were characterized in terms of their morphology and chemical composition. Detailed studies on the antibacterial activity of these materials were carried out for Bacillus subtilis, Staphylococcus aureus and Klebsiella pneumoniae.
View Article and Find Full Text PDF