Even though several studies highlighted the role of maternal thyroid hormones (THs) during embryo-foetal development, direct evidence of their interaction with embryonic thyroid receptors (TRs) is still lacking. We generated a transgenic mouse model ubiquitously expressing a reporter gene tracing TH action during development. We engineered a construct (TRE2×) containing two TH-responsive elements controlling the expression of the LacZ reporter gene, which encodes β-galactosidase (β-gal).
View Article and Find Full Text PDFCitron kinase (CIT-K), a ser/thr kinase, is required during neurogenesis for cytokinesis of neuronal precursors. Deletion of the cit-k gene in mice (cit-k(-/-) mice) leads to a severe malformative central nervous system syndrome characterized by microencephaly, ataxia, and epileptic seizures; affected mice die by the third week of postnatal life. We have used NADPH-diaphorase histochemistry, immunostaining for calbindin, calretinin, parvalbumin, and glutamic acid decarboxylase 67 (GAD67), and histological staining to undertake qualitative and quantitative analyses of the morphology and distribution of interneurons in the barrelfield cortex of cit-k(-/-) mice.
View Article and Find Full Text PDFDendritic spines are highly dynamic protuberances that are thought to be crucial for learning and memory. Although it is well known that actin filaments and membrane dynamics regulate spine plasticity, how these two events are linked locally is less clear. Here, we provide evidence that Citron-N (CIT-N), a binding partner of the small GTPase RhoA, is associated with the actin filaments and Golgi compartments of dendritic spines.
View Article and Find Full Text PDFHydrocephalus is a common and variegated pathology often emerging in newborn children after genotoxic insults during pregnancy (Hicks and D'Amato, 1980). Cre recombinase is known to have possible toxic effects that can compromise normal cell cycle and survival. Here we show, by using three independent nestin Cre transgenic lines, that high levels of Cre recombinase expression into the nucleus of neuronal progenitors can compromise normal brain development.
View Article and Find Full Text PDF