Publications by authors named "Patrizia Jankovic"

Catalytic peptides are gaining attention as alternatives to enzymes, especially in industrial applications. Recent advances in peptide design have improved their catalytic efficiency with approaches such as self-assembly and metal ion complexation. However, the fundamental principles governing peptide catalysis at the sequence level are still being explored.

View Article and Find Full Text PDF

Catalytic peptides are low cost biomolecules able to catalyse chemical reactions such as ester hydrolysis. This dataset provides a list of catalytic peptides currently reported in literature. Several parameters were evaluated, including sequence length, composition, net charge, isoelectric point, hydrophobicity, self-assembly propensity and mechanism of catalysis.

View Article and Find Full Text PDF

Ester hydrolysis is of wide biomedical interest, spanning from the green synthesis of pharmaceuticals to biomaterials' development. Existing peptide-based catalysts exhibit low catalytic efficiency compared to natural enzymes, due to the conformational heterogeneity of peptides. Moreover, there is lack of understanding of the correlation between the primary sequence and catalytic function.

View Article and Find Full Text PDF

Viruses are natural supramolecular nanostructures that form spontaneously by molecular self-assembly of complex biomolecules. Peptide self-assembly is a versatile tool that allows mimicking viruses by creating their simplified versions through the design of functional, supramolecular materials with modularity, tunability, and responsiveness to chemical and physical stimuli. The main challenge in the design and fabrication of peptide materials is related to the precise control between the peptide sequence and its resulting supramolecular morphology.

View Article and Find Full Text PDF