The intestine is essential for the modulation of nutrient absorption and the removal of waste. Gut pathologies, such as cancer, inflammatory bowel diseases (IBD), irritable bowel syndrome (IBS), and celiac disease, which extensively impact gut functions, are thus critical for human health. Targeted drug delivery is essential to tackle these diseases, improve therapy efficacy, and minimize side effects.
View Article and Find Full Text PDFCardiomyocyte renewal represents an unmet clinical need for cardiac regeneration. Stem cell paracrine therapy has attracted increasing attention to resurge rescue mechanisms within the heart. We previously characterized the paracrine effects that human amniotic fluid-derived stem cells (hAFSC) can exert to provide cardioprotection and enhance cardiac repair in preclinical models of myocardial ischemia and cardiotoxicity.
View Article and Find Full Text PDFHigh-risk neuroblastoma (HR-NB) still remains the most dangerous tumor in early childhood. For this reason, the identification of new therapeutic approaches is of fundamental importance. Recently, we combined the conventional pharmacological approach to NB, represented by cisplatin, with fendiline hydrochloride, an inhibitor of several transporters involved in multidrug resistance of cancer cells, which demonstrated an enhancement of the ability of cisplatin to induce apoptosis.
View Article and Find Full Text PDFDespite significant improvement of neuroblastoma (NB) patients' survival due to recent treatment advancements in recent years, NB is still associated with high mortality rate. In search of novel strategies to increase NB's susceptibility to pharmacological treatments, we investigated the in vitro and in vivo effects of fendiline hydrochloride as an enhancer of cisplatin antitumor activity. To assess the modulation of fendiline treatment on cisplatin responses, we used in vitro (evaluating NB cell proliferation by XCELLigence technology and colony formation, and gene expression by RT-PCR) and in vivo (NB cell grafts in NOD-SCID mice) models of NB.
View Article and Find Full Text PDFTo overcome the lack of effective pharmacological treatments for high-risk neuroblastoma (HR-NB), the development of novel in vitro and in vivo models that better recapitulate the disease is required. Here, we used an in vitro multiclonal cell model encompassing NB cell differentiation stages, to identify potential novel pharmacological targets. This model allowed us to identify, by low-density RT-PCR arrays, two gene sets, one over-expressed during NB cell differentiation, and the other up-regulated in more malignant cells.
View Article and Find Full Text PDFTrue cardiac regeneration of the injured heart has been broadly described in lower vertebrates by active replacement of lost cardiomyocytes to functionally and structurally restore the myocardial tissue. On the contrary, following severe injury (i.e.
View Article and Find Full Text PDFThe aim of this study was to compare the micro-morphological features of two different non-drug Cannabis sativa L. biotypes (Chinese accession G-309 and one fibrante variety) and to evaluate the phytochemical profile as well as some biological properties of the essential oils (EOs) obtained by hydrodistillation of dried flowering tops. After a micro-morphological evaluation by scanning electron microscopy, the phytochemical composition was analysed by GC-FID and GC-MS analyses.
View Article and Find Full Text PDFCreatine is pivotal in energy metabolism of the brain. In primary creatine deficiency syndromes, creatine is missing from the brain. Two of them (AGAT and GAMT deficiency) are due to impaired creatine synthesis, and can be treated by creatine supplementation.
View Article and Find Full Text PDFBackground: Adenosine triphosphate (ATP) is the energy currency of the body; it takes part in various and indispensable metabolic processes for the maintenance of cell homeostasis, degrading to its hydrolysis product, adenosine diphosphate (ADP). Efficient ways to restore ATP are therefore necessary in the cells. When the cell lacks energy due to ischemic conditions or high ATP demand, phosphocreatine gives its phosphate group to ADP that converts to ATP, in a reaction catalyzed by the enzyme creatine kinase.
View Article and Find Full Text PDFSeveral enzymes are involved in the energy production, becoming a possible target for new anti-cancer drugs. In this paper, we used biochemical and in silico studies to evaluate the effects of two guanidine molecules, (Boc) -creatine and metformin, on creatine kinase, an enzyme involved in the regulation of intracellular energy levels. Our results show that both drugs inhibit creatine kinase activity; however, (Boc) -creatine displays a competitive inhibition, while metformin acts with a non-competitive mechanism.
View Article and Find Full Text PDFRecent advances in life sciences suggest that human and rodent cell responses to stimuli might differ significantly. In this context, the results achieved in neurotoxicology and biomedical research practices using neural networks obtained from mouse or rat primary culture of neurons would benefit of the parallel evaluation of the same parameters using fully differentiated neurons with a human genetic background, thus emphasizing the current need of neuronal cells with human origin. In this work, we developed a human functionally active neural network derived by human neuroblastoma cancer cells genetically engineered to overexpress NDM29, a non-coding RNA whose increased synthesis causes the differentiation toward a neuronal phenotype.
View Article and Find Full Text PDFP2X7-type purinergic receptors are distributed throughout the nervous system where they contribute to physiological and pathological functions. In the retina, this receptor is found in both inner and outer cells including microglia modulating signaling and health of retinal cells. It is involved in retinal neurodegenerative disorders such as retinitis pigmentosa and age-related macular degeneration (AMD).
View Article and Find Full Text PDFOur previous reports indicate that the electron transfer chain and FF-ATP synthase are functionally expressed in myelin sheath, performing an extra-mitochondrial oxidative phosphorylation (OXPHOS), which would provide energy to the nerve axon. This supports the idea that myelin plays a trophic role for the axon. Although the four ETC complexes and ATP synthase are considered exquisite mitochondrial proteins, they are found ectopically expressed in several membranous structures.
View Article and Find Full Text PDFHigh Risk Neuroblastoma (HR-NB) is a pediatric cancer characterized by high malignancy and remarkable cell heterogeneity within the tumour nodules. In a recent study, we demonstrated that in vitro and in vivo over-expression of the non-coding RNA NDM29 (neuroblastoma differentiation marker 29) induces NB cell differentiation, dramatically reducing their malignancy. Among gene expression changes, differentiated phenotype induced by NDM29 is characterized by decrease of the expression of ABC transporters responsible for anticancer drug resistance.
View Article and Find Full Text PDFRecently, we have demonstrated that myelin conducts an extramitochondrial oxidative phosphorylation, hypothesizing a novel supportive role for myelin in favor of the axon. We have also hypothesized that the ATP produced in myelin could be transferred thought gap junctions. In this work, by biochemical, immunohistochemical, and electrophysiological techniques, the existence of a connection among myelin to the axon was evaluated, to understand how ATP could be transferred from sheath to the axoplasm.
View Article and Find Full Text PDFThe creatine/phosphocreatine system carries ATP from production to consumption sites and buffers the intracellular content of ATP at times of energy deprivation. The creatine transporter deficiency syndrome is an X-linked disease caused by a defective creatine transporter into the central nervous system. This disease is presently untreatable because creatine lacking its carrier cannot cross neither the blood-brain barrier nor the cell plasma membranes.
View Article and Find Full Text PDFIn in vitro mouse hippocampal slices we investigated whether cyclocreatine is capable of entering brain cells independently of the creatine transporter and if it reproduces the neuroprotective effect of creatine. Our study shows that cyclocreatine does not increase the creatine content, but is taken up as such and then phosphorylated to phosphocyclocreatine. This uptake is largely blocked by inactivation of the creatine transporter, however some cyclocreatine is taken up and posphorylated even after such inactivation.
View Article and Find Full Text PDFCreatine is an amino acid that has a pivotal role in energy metabolism of cells. Creatine acts as an "ATP shuttle", carrying ATP to the sites where it is utilized, through its reversible phosphorylation by creatine kinase. Moreover, the creatine-phosphocreatine system delays ATP depletion during anoxia or ischemia, thus exerting a neuroprotective role during those pathological conditions.
View Article and Find Full Text PDF