Neuroblastoma is a severe childhood disease, accounting for ~10% of all infant cancers. The amplification of the MYCN gene, coding for the N-Myc transcription factor, is an essential marker correlated with tumor progression and poor prognosis. In neuroblastoma cells, the mitotic kinase Aurora-A (AURKA), also frequently overexpressed in cancer, prevents N-Myc degradation by directly binding to a highly conserved N-Myc region.
View Article and Find Full Text PDFBackground Pharmacological inhibition of polo-like kinase 1 (PLK1) represents a new approach for the treatment of solid tumors. This study was aimed at determining the first cycle dose-limiting toxicities (DLTs) and related maximum tolerated dose (MTD) of NMS-1286937, a selective ATP-competitive PLK1-specific inhibitor. Secondary objectives included evaluation of its safety and pharmacokinetic (PK) profile in plasma, its antitumor activity, and its ability to modulate intracellular targets in biopsied tissue.
View Article and Find Full Text PDFUnlabelled: L-2-Hydroxyglutaric aciduria (L2HGA) is an extremely rare hereditary neurometabolic disease, characterized by increased L-2-hydroxyglutarate (L2HG) levels in the brain and biological fluids. 24-h urine 2HG level remains the biochemical hallmark for the diagnosis of L2HGA, whereas it is unknown the feasibility to measure in vivo the intracerebral levels of 2HG by using magnetic resonance spectroscopy (MRS).
Patients And Methods: We used at 3T H(1)-MRS Single-Voxel (SV) PRESS sequences tailored to detect 2HG, in three adult patients with the diagnosis of L2HGA and in healthy controls.
Drug-resistance to chemotherapics in aggressive neuroblastoma (NB) is characterized by enhanced cell survival mediated by TrkB and its ligand, brain-derived neurotrophic factor (BDNF); thus reduction in BDNF levels represent a promising strategy to overcome drug-resistance, but how chemotherapics regulate BDNF is unknown. Here, cisplatin treatment in SK-N-BE neuroblastoma upregulated multiple BDNF transcripts, except exons 5 and 8 variants. Cisplatin increased BDNF mRNA and protein, and enhanced translation of a firefly reporter gene flanked by BDNF 5'UTR exons 1, 2c, 4 or 6 and 3'UTR-long.
View Article and Find Full Text PDFHaematologica
July 2015
Danusertib is a pan-aurora kinase inhibitor with potent activity against Abl kinase including the gatekeeper T315I mutant. A phase 1 dose escalation study of danusertib was conducted in patients with accelerated or blastic phase chronic myeloid leukemia or Philadelphia chromosome-positive acute lymphoblastic leukemia. Two dosing schedules were studied: schedule A, in which danusertib was given by 3-hour intravenous infusion daily for 7 consecutive days (days 1-7) in a 14-day cycle, and schedule B, in which the danusertib was given by 3-hour intravenous infusion daily for 14 consecutive days (days 1-14) in a 21-day cycle.
View Article and Find Full Text PDFMaternal embryonic leucine zipper kinase (MELK) is upregulated in several types of tumor, including breast, prostate, and brain tumors. Its expression is generally associated with cell survival, cell proliferation, and resistance to apoptosis. Therefore, the potential of MELK inhibitors as therapeutic agents is recently attracting considerable interest.
View Article and Find Full Text PDFAurora kinases represent an appealing target for anticancer therapies and several Aurora inhibitors are in clinical development, including the potent pan-Aurora inhibitor Danusertib. Treatment with Aurora inhibitors has been shown to induce diverse biological responses in different tumor cells, in part depending on TP53 status. To characterize the effects of Danusertib at the transcriptional level we carried out gene expression profiling of wt and TP53 mutant tumor cells showing differential cell cycle response upon drug treatment.
View Article and Find Full Text PDFA novel series of 3-amino-1H-thieno[3,2-c]pyrazole derivatives demonstrating high potency in inhibiting Aurora kinases was developed. Here we describe the synthesis and a preliminary structure-activity relationship, which led to the discovery of a representative compound (38), which showed low nanomolar inhibitory activity in the anti-proliferation assay and was able to block the cell cycle in HCT-116 cell line. This compound demonstrated favorable pharmacokinetic properties and good efficacy in the HL-60 xenograft tumor model.
View Article and Find Full Text PDFAurora kinases are mitotic enzymes involved in centrosome maturation and separation, spindle assembly and stability, and chromosome condensation, segregation, and cytokinesis and represent well known targets for cancer therapy because their deregulation has been linked to tumorigenesis. The availability of suitable markers is of crucial importance to investigate the functions of Auroras and monitor kinase inhibition in in vivo models and in clinical trials. Extending the knowledge on Aurora substrates could help to better understand their biology and could be a source for clinical biomarkers.
View Article and Find Full Text PDFPurpose: Danusertib (PHA-739358) is a small-molecule pan-aurora kinase inhibitor. This phase I dose escalation study was conducted to evaluate safety and tolerability of danusertib with additional pharmacokinetic, biomarker, and efficacy assessments.
Patients And Methods: Patients with solid tumors refractory to standard therapies or with no standard therapy available were enrolled.
Curr Opin Drug Discov Devel
July 2009
The development of Aurora kinase inhibitors is a competitive research field, with many inhibitors currently being evaluated in preclinical and clinical studies. Progress during the past few years, both preclinically and clinically, has increased the evidence supporting Aurora kinases as promising molecular targets for the treatment of cancer. Aurora kinase inhibitors differ based on their selectivity within the Aurora kinase family and their cross-reactivities with other kinases.
View Article and Find Full Text PDFDependent on the degree of inhibition of different Aurora kinase family members, various events in mitosis are affected, resulting in differential cellular responses. These different cellular responses have to be considered in the clinical development of the small molecule inhibitors with respect to the chosen indications, schedules and appropriate endpoints. Here the properties of the most advanced small molecule Aurora kinase inhibitors are compared and a case report on the development of PHA-739358 - a spectrum selective kinases inhibitor with a dominant phenotype of Aurora kinases inhibition, which is currently being tested in clinical trials - is discussed.
View Article and Find Full Text PDFPHA-739358 is a small-molecule 3-aminopyrazole derivative with strong activity against Aurora kinases and cross-reactivities with some receptor tyrosine kinases relevant for cancer. PHA-739358 inhibits all Aurora kinase family members and shows a dominant Aurora B kinase inhibition-related cellular phenotype and mechanism of action in cells in vitro and in vivo. p53 status-dependent endoreduplication is observed upon treatment of cells with PHA-739358, and phosphorylation of histone H3 in Ser(10) is inhibited.
View Article and Find Full Text PDFExpert Opin Ther Targets
January 2008
Aurora kinases are key regulators of mitosis and inhibitors being developed by a wide range of pharmaceutical and biotechnology companies for the treatment of cancer. Tumor cells respond differentially on inhibition of different Aurora kinase family members and these differences have to be considered in the clinical development of small-molecule inhibitors with respect to the chosen indications, the schedules or the selection of appropriate end points and they should also guide the development of biomarkers. Preclinical validation of potential biomarkers for Aurora kinase inhibitors led to a first application in clinical trials, as exemplified for the phosphorylation of histone H3 to follow Aurora-B inhibition.
View Article and Find Full Text PDFMutations in the kinase domain of Bcr-Abl are the most common cause of resistance to therapy with imatinib in patients with chronic myelogenous leukemia (CML). Second-generation Bcr-Abl inhibitors are able to overcome most imatinib-resistant mutants, with the exception of the frequent T315I substitution, which is emerging as a major cause of resistance to these drugs in CML patients. Structural studies could be used to support the drug design process for the development of inhibitors able to target the T315I substitution, but until now no crystal structure of the T315I Abl mutant has been solved.
View Article and Find Full Text PDFThe optimization of a series of 5-phenylacetyl 1,4,5,6-tetrahydropyrrolo[3,4-c]pyrazole derivatives toward the inhibition of Aurora kinases led to the identification of compound 9d. This is a potent inhibitor of Aurora kinases that also shows low nanomolar potency against additional anticancer kinase targets. Based on its high antiproliferative activity on different cancer cell lines, favorable chemico-physical and pharmacokinetic properties, and high efficacy in in vivo tumor models, compound 9d was ultimately selected for further development.
View Article and Find Full Text PDFPurpose: Aurora kinases play critical roles during mitosis in chromosome segregation and cell division. The aim of this study was to determine the preclinical profile of a novel, highly selective Aurora kinase inhibitor, PHA-680632, as a candidate for anticancer therapy.
Experimental Design: The activity of PHA-680632 was assayed in a biochemical ATP competitive kinase assay.
Potent and selective Aurora kinase inhibitors were identified from the combinatorial expansion of the 1,4,5,6-tetrahydropyrrolo[3,4-c]pyrazole bi-cycle, a novel and versatile scaffold designed to target the ATP pocket of protein kinases. The most potent compound reported in this study had an IC(50) of 0.027 microM in the enzymatic assay for Aur-A inhibition and IC(50)s between 0.
View Article and Find Full Text PDFBiochem Biophys Res Commun
August 2004
A number of genes have been identified in the fully sequenced genome of Saccharomyces cerevisiae that appear to be conserved throughout evolution and the function of which remains poorly understood. In this manuscript we describe the initial characterization of yeast BUD31 gene. cDNA sequences highly related to BUD31 have been identified in human, Xenopus laevis, and Caenorhabditis elegans.
View Article and Find Full Text PDF