Alloying is a key step towards the fabrication of advanced and unique nanomaterials demanded by the next generation of nanotechnology solutions. In particular, the alloys of Au with the sp-metals are expected to have several appealing plasmonic and electronic properties for a wide range of applications in optics, catalysis, nanomedicine, sensing and quantum devices. However, little is known about the thermodynamic and synthetic factors leading to the successful alloying of Au and sp-metals at the nanoscale.
View Article and Find Full Text PDFHigh anthropogenic CO emissions are among the main causes of climate change. Herein, we investigate the use of CO for the synthesis of organic cyclic carbonates on metal-free nitrogen-doped carbon catalysts obtained from chitosan, chitin, and shrimp shell wastes, both in batch and in continuous flow (CF). The catalysts were characterized by N physisorption, CO-temperature-programmed desorption, X-ray photoelectron spectroscopy, scanning electron microscopy, and CNHS elemental analysis, and all reactivity tests were run in the absence of solvents.
View Article and Find Full Text PDFIn the synthesis of CuInS2 quantum dots (QDs), the halide ions present in the copper salts influence the QD growth and optical properties. X-ray absorption spectroscopy allowed rationalizing the halide incorporation in the lattice and the dependence of electronic properties of the material on the ion's polarizability and interaction with hydrophobic moieties.
View Article and Find Full Text PDFThe development of new safe inorganic UV filters to effectively protect the skin from ultraviolet (UV) radiation effects is an emerging issue. Bismuth titanate-based UV filters embedded into mesoporous silica nanoparticles (MSN) represent a new class of inorganic sunscreens, with excellent UVA and UVB shielding properties. In addition, the presence of bismuth ions promotes a self-sealing process, allowing (i) the entrapment of the active phases in the deepest core of the system and (ii) the formation of an external glassy silica layer with a consequent suppression of the photocatalytic activity.
View Article and Find Full Text PDFCore-shell systems have attracted increasing interest among the research community in recent years due to their unique properties and structural features, and the development of new synthetic strategies is still a challenge. In this work, we have investigated lanthanide-doped Bi2SiO5 nanocrystal formation inside mesoporous silica nanoparticles (MSNs). The role of both synthesis temperature and concentration of the bismuth precursor impregnated into the MSNs is discussed, showing an unprecedented strategy for the simultaneous stabilization of a crystalline core and a glassy shell.
View Article and Find Full Text PDFUpconversion nanothermometry combines the possibility of optically sensing temperatures in very small areas, such as microfluidic channels or on microelectronic chips, with a simple detection setup in the visible spectral range and reduced heat transfer after near-infrared (NIR) excitation. We propose a ratiometric strategy based on Eu ion luminescence activated through upconversion processes. Yb ions act as a sensitizer in the NIR region (980 nm), and energy is transferred to Tm ions that in turn excite Eu ions whose luminescence is shown to be thermally sensitive.
View Article and Find Full Text PDFAmong the foreseeable therapeutic approaches at the cellular level, nanoplatform-driven photothermal therapy is a thriving tool for the selective eradication of malignant tissues with minimal side effects to healthy ones. Hence, chemically versatile, near-infrared absorbing plasmonic nanoparticles are distinctly appealing and most sought after as efficient photothermal agents. In this work, a straightforward method to synthesize monodisperse PEGylated copper sulfide nanoparticles of pure covellite (CuS) phase, featuring strong localized surface plasmonic resonance absorption in the near-infrared and flexible surface chemistry, imparted by monomethyl ether polyethylene glycol molecules, is developed and optimized.
View Article and Find Full Text PDFWe report a facile, inexpensive, and green method for the preparation of Pd nanoparticles in aqueous medium stabilized by anionic sulfonated surfactants sodium 1-dodecanesulfonate 1a, sodium dodecylbenzenesulfonate 1b, dioctyl sulfosuccinate sodium salt 1c, and poly(ethylene glycol) 4-nonylphenyl-3-sulfopropyl ether potassium salt 1d simply obtained by stirring aqueous solutions of Pd(OAc) with the commercial anionic surfactants further treated under hydrogen atmosphere for variable amounts of time. The aqueous Pd nanoparticle solutions were tested in the selective hydrogenation reactions of aryl-alcohols, -aldehydes, and -ketones, leading to complete conversion to the deoxygenated products even in the absence of strong Brønsted acids in the reduction of aromatic aldehydes and ketones, in the controlled semihydrogenation of alkynes leading to alkenes, and in the efficient hydrodechlorination of aromatic substrates. In all cases, the micellar media were crucial for stabilizing the metal nanoparticles, dissolving substrates, steering product selectivity, and enabling recycling.
View Article and Find Full Text PDFLow intrinsic toxicity, high solubility, and stability are important and necessary features of gold nanoparticles to be used in the biomedical field. In this context, charged nanoparticles proved to be very versatile, and among them charged mixed-monolayer gold nanoparticles, displaying monolayers with well-defined morphologies, represent a paradigm. By using mixtures of hydrogenated and fluorinated thiols, the formation of monolayer domains may be brought to an extreme because of the immiscibility of fluorinated and hydrogenated chains.
View Article and Find Full Text PDFThe application of nanosized inorganic UV filters in cosmetic field is limited by their high photocatalytic properties that could induce the degradation or dangerous transformation of the organic molecules in sunscreen formulations. To overcome this problem and simultaneously enlarge the window of filter's absorption, we propose the growth of bismuth titanates BiTiO into mesoporous silica nanoparticles (MSN). We investigated the chemical-physical properties by means of XRPD, TEM, UV-vis spectroscopy, N physisorption, XPS, and SF-ICP-MS analysis, while the influence on the environment was evaluated through photocatalytic tests.
View Article and Find Full Text PDFHypothesis: A combination of acid and iron ions inside the wood has been corroding the cellulose matrix of the Swedish warship Vasa, imposing its deacidification. Past deacidification treatments displayed poor penetration inside the wood matrix with limited efficacy. A vacuum assisted treatment of wood using newly developed calcium hydroxide nanoparticle dispersions represents a possible candidate for the treatment of acidic waterlogged wood objects such as sculptures and decorative artifacts.
View Article and Find Full Text PDFTransition metal-based lithium orthosilicates (Li2MSiO4, M = Fe, Ni, Co, Mn) are gaining a wide interest as cathode materials for lithium-ion batteries. These materials present a very complex polymorphism that could affect their physical properties. In this work, we synthesized the Li2FeSiO4 and Li2MnSiO4 compounds by a sol-gel method at different temperatures.
View Article and Find Full Text PDFHyper-cross-linked resins stemming from a gel-type poly-chloromethylated poly(styrene-co-divinylbenzene) resin (GT) have been investigated by a multi-methodological approach based on elemental analysis, scanning electron microscopy, X-ray microanalysis, and solvent absorption. The hyper-cross-linking of the parent resin was accomplished by Friedel-Crafts alkylation of the phenyl rings of the resins with the chloromethyl groups. This produced a permanent pore system comprising both micropores (<2.
View Article and Find Full Text PDFThe polymer framework of water-swollen copolymers of N,N-dimethylacrylamide, acrylamido-2-methylpropanesulfonic acid, and ethylenedimethacrylate (nominal cross-linking degrees of 4, 8, and 20 mol %) is composed of highly expanded domains, with "pores" not less than 6 nm in diameter. When the 4% cross-linked copolymer (DAE 26-4) is swollen with a 10(-4) M solution of 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL) in water, MeOH, EtOH, or nBuOH, the molecules of the paramagnetic probe rotate rapidly (τ<1000 ps) and as fast as in the bulk liquid in the case of water. The swelling degree of DAE 26-4 is related to the Hansen solubility parameters of a number of liquids, including linear alcohols up to n-octanol.
View Article and Find Full Text PDFThe controlled synthesis of gold nanoparticles (AuNPs), incarcerated in a semicrystalline nanoporous polymer matrix that consisted of a syndiotactic polystyrene-co-cis-1,4-polybutadiene multi-block copolymer is described. This catalyst was successfully tested in the oxidation of primary and secondary alcohols, in which we used dioxygen as the oxidant under mild conditions. Accordingly, (±)-1-phenylethanol was oxidised to acetophenone in high yields (96%) in 1 h, at 35 °C, whereas benzyl alcohol was quantitatively oxidised to benzaldehyde with a selectivity of 96% in 6 h.
View Article and Find Full Text PDFWe report a facile strategy to obtain multiwalled carbon nanotubes (MWCNTs) functionalized with covalently bonded lysozyme. The functionalization procedure has been investigated by means of several techniques, including thermogravimetry, Raman spectroscopy, transmission electron microscopy, and cyclic voltammetry. A functionalization of about 1 lysozyme molecule every 4000 carbon atoms is obtained.
View Article and Find Full Text PDFStable ultra-small gold nanoparticles have been synthesized in aqueous phase by using a tri-block copolymer (BMB) as a templating agent consisting of two PEG-methylacrylate chains (B blocks) anchored to a poly(methacrylic) moiety containing a trithiocarbonate unit (M block). The effect of the BMB/Au molar ratios on the final particle size, shape and monodispersity has been investigated. The synthesized nanosols have been characterized by means of Visible Absorption, Small Angle X-ray Scattering (SAXS), and Transmission Electron Microscopy (TEM).
View Article and Find Full Text PDFNanostructured Au/Al(2)O(3)-CeO(2) catalysts with a low content of precious metal (0.9% wt.) were prepared immobilizing two different stabilized Au sols on a high surface area Al(2)O(3)-CeO(2) mixed oxide with a uniform pore size distribution, synthesized by a one-pot methodology.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
March 2010
Cross-linked functional polymers (functional resins) are versatile, designable and useful supports for metal nanoclusters that are able to provide reasonably thermally and mechanically stable multi-functional metal catalysts characterized by good activity and selectivity. The paper reviews authors' contributions to the field from the early 1990s to the present.
View Article and Find Full Text PDFThe effects of gold nanoparticles deposited on titanium dioxide on the photocatalytic oxidative degradation of two organic substrates, i.e. formic acid and the azo dye Acid Red 1, and on the parallel O(2) reduction yielding hydrogen peroxide have been investigated under visible light irradiation.
View Article and Find Full Text PDFA triphasic liquid system fabricated from isooctane, aqueous base, and trioctylmethylammonium chloride/decanol promoted the formation of Pd-nanoparticles in the size range of 2-4 nm which remained immobilised in the onium phase, catalysed organic reactions, and could be recycled.
View Article and Find Full Text PDFPure and doped NaAlH(4) with 5 mol % Ti on the basis of Ti(13).6THF have been investigated by means of X-ray synchrotron radiation. The Rietveld method has been used to study the possible substitution of Ti inside the NaAlH(4) structure and/or the presence of vacancies.
View Article and Find Full Text PDF