Context: Analytic exchange-correlation kernel formulations are of the outermost importance for density functional theory (DFT) perturbation calculations. In this paper, the working equation for the exchange-correlation kernel of the generalized gradient approximation (GGA) for perturbation dependent auxiliary functions is derived and discussed in the framework of auxiliary density functional theory (ADFT). The presented new formulation is extended to the unrestricted approach, too.
View Article and Find Full Text PDFNi-CeO nanoparticles (NPs) are promising nanocatalysts for water splitting and water gas shift reactions due to the ability of ceria to temporarily donate oxygen to the catalytic reaction and accept oxygen after the reaction is completed. Therefore, elucidating how different properties of the Ni-Ceria NPs relate to the activity and selectivity of the catalytic reaction, is of crucial importance for the development of novel catalysts. In this work the active learning (AL) method based on machine learning regression and its uncertainty is used for the global optimization of CeNiO (x = 1, 2, 3) nanoparticles, employing density functional theory calculations.
View Article and Find Full Text PDFThe question of whether a solid-liquid phase transition occurs in small clusters poses a fundamental challenge. In this study, we attempt to elucidate this phenomenon through a thorough examination of the thermal behavior and structural stability of Pd clusters employing ab initio simulations. Initially, a systematic global search is carried out to identify the various isomers of the Pd cluster.
View Article and Find Full Text PDFSince the form of the exact functional in density functional theory is unknown, we must rely on density functional approximations (DFAs). In the past, very promising results have been reported by combining semi-local DFAs with exact, i.e.
View Article and Find Full Text PDFStructural elucidation of chemical compounds is challenging experimentally, and theoretical chemistry methods have added important insight into molecules, nanoparticles, alloys, and materials geometries and properties. However, finding the optimum structures is a bottleneck due to the huge search space, and global search algorithms have been used successfully for this purpose. In this work, we present the quantum machine learning software/agent for materials design and discovery (QMLMaterial), intended for automatic structural determination for several chemical systems: atomic clusters, atomic clusters and the spin multiplicity together, doping in clusters or solids, vacancies in clusters or solids, adsorption of molecules or adsorbents on surfaces, and finally atomic clusters on solid surfaces/materials or encapsulated in porous materials.
View Article and Find Full Text PDFIn this work, recent research progresses in the formation of PtCu nanoparticles onto the surface of graphene are described, and the obtained results are contrasted with previously published theoretical studies. To form these nanoparticles, tetrabutylammonium hexachloroplatinate, and copper acetylacetonate are used as platinum and copper precursors, respectively. Oleylamine is used as a reductor and a solvent.
View Article and Find Full Text PDFGenetic algorithms (GAs) are stochastic global search methods inspired by biological evolution. They have been used extensively in chemistry and materials science coupled with theoretical methods, ranging from force-fields to high-throughput first-principles methods. The methodology allows an accurate and automated structural determination for molecules, atomic clusters, nanoparticles, and solid surfaces, fundamental to understanding chemical processes in catalysis and environmental sciences, for instance.
View Article and Find Full Text PDFIn this paper, the history, present status, and future of density-functional theory (DFT) is informally reviewed and discussed by 70 workers in the field, including molecular scientists, materials scientists, method developers and practitioners. The format of the paper is that of a roundtable discussion, in which the participants express and exchange views on DFT in the form of 302 individual contributions, formulated as responses to a preset list of 26 questions. Supported by a bibliography of 777 entries, the paper represents a broad snapshot of DFT, anno 2022.
View Article and Find Full Text PDFFinding the optimum structures of non-stoichiometric or berthollide materials, such as (1D, 2D, 3D) materials or nanoparticles (0D), is challenging due to the huge chemical/structural search space. Computational methods coupled with global optimization algorithms have been used successfully for this purpose. In this work, we have developed an artificial intelligence method based on active learning (AL) or Bayesian optimization for the automatic structural elucidation of vacancies in solids and nanoparticles.
View Article and Find Full Text PDFUnderstanding the magnetic response of electrons in nanoclusters is essential to interpret their NMR spectra thereby providing guidelines for their synthesis towards various target applications. Here, we consider two copper hydride clusters that have applications in hydrogen storage and release under standard temperature and pressure. Through Born-Oppenheimer molecular dynamics simulations, we study dynamics effects and their contributions to the NMR peaks.
View Article and Find Full Text PDFAdsorbate interactions with substrates (e.g. surfaces and nanoparticles) are fundamental for several technologies, such as functional materials, supramolecular chemistry, and solvent interactions.
View Article and Find Full Text PDFThe working equations for the extension of auxiliary density perturbation theory (ADPT) to hybrid functionals, employing the variational fitting of the Fock potential, are derived. The response equations in the resulting self-consistent ADPT (SC-ADPT) are solved iteratively with an adapted Eirola-Nevanlinna algorithm. As a result, a memory and CPU time efficient implementation of perturbation theory free of four-center electron repulsion integrals (ERIs) is obtained.
View Article and Find Full Text PDFThe variational fitting of the Fock potential employing localized molecular orbitals requires either the inversion of the local two-center Coulomb matrices or alternatively the solution of corresponding linear equation systems with these matrices. In both cases, the method of choice is the Cholesky decomposition of the formally positive definite local two-center Coulomb matrices. However, due to finite-precision round-off errors, the local Coulomb matrices may be indefinite, and thus, the Cholesky decomposition is not applicable.
View Article and Find Full Text PDFIn this work, we present the implementation of a variational density fitting methodology that uses iterative linear algebra for solving the associated system of linear equations. It is well known that most difficulties with this system arise from the fact that the coefficient matrix is in general ill-conditioned and, due to finite precision round-off errors, it may not be positive definite. The dimensionality, given by the number of auxiliary functions, also poses a challenge in terms of memory and time demand since the coefficient matrix is dense.
View Article and Find Full Text PDFdeMon2k is a readily available program specialized in Density Functional Theory (DFT) simulations within the framework of Auxiliary DFT. This article is intended as a tutorial-review of the capabilities of the program for molecular simulations involving ground and excited electronic states. The program implements an additive QM/MM (quantum mechanics/molecular mechanics) module relying either on non-polarizable or polarizable force fields.
View Article and Find Full Text PDFThis work presents a variationally fitted long-range exact exchange algorithm that can be used for the computation of range-separated hybrid density functionals in the linear combination of Gaussian type orbital (LCGTO) approximation. The obtained LCGTO energy and gradient expressions are free of four-center integrals and employ modified three-center integral recurrence relations to obtain optimal computational performance. The accuracy and performance of selected range-separated hybrid functionals with variational fitted long-range exact exchange are analyzed and discussed.
View Article and Find Full Text PDFAuxiliary density functional theory (ADFT) hybrid calculations are based on the variational fitting of the Coulomb and Fock potential and, therefore, are free of four-center electron repulsion integrals. So far, ADFT hybrid calculations have been validated successfully for standard enthalpies of formation. In this work the accuracy of ADFT hybrid calculations for the description of pericyclic reactions was quantitatively validated at the B3LYP/6-31G*/GEN-A2* level of theory.
View Article and Find Full Text PDFIn this paper we remind the reader of a simple, intuitive picture of chemical shifts in X-ray photoelectron spectroscopy (XPS) as the difference in chemical bonding between the probed atom and its neighbor to the right in the periodic table, the so called Z+1 approximation. We use the classical ESCA molecule, ethyl trifluoroacetate, and 4d-transition metals to explicitly demonstrate agreement between core-level shifts computed as differences between final core-hole states and the approach where each core-ionized atom is replaced by a Z+1 atom. In this final state, or total energy picture, the XPS shift arises due to the more or less unfavorable chemical bonding of the effective nitrogen in the carbon geometry for the ESCA molecule.
View Article and Find Full Text PDFA first-principle investigation of structures and properties of Ni Pd (n=1-5) clusters is presented. For this study, the linear combination of Gaussian-type orbitals auxiliary density functional theory (LCGTO-ADFT) method has been employed. In order to determine the lowest energy structures, several isomers in different spin multiplicities were studied, for each cluster size.
View Article and Find Full Text PDFThe atomic structures, bonding characteristics, spin magnetic moments, and stability of VCu, VAg, and VAu (x = 3-14) clusters were examined using density functional theory. Our studies indicate that the effective valence of vanadium is size-dependent and that at small sizes some of the valence electrons of vanadium are localized on vanadium, while at larger sizes the 3d orbitals of the vanadium participate in metallic bonding eventually quenching the spin magnetic moment. The electronic stability of the clusters may be understood through a split-shell model that partitions the valence electrons in either a delocalized shell or localized on the vanadium atom.
View Article and Find Full Text PDFThe working equations for the calculation of analytic second energy derivatives in the framework of auxiliary density functional theory (ADFT) are presented. The needed perturbations are calculated with auxiliary density perturbation theory (ADPT) which is extended to perturbation dependent basis and auxiliary functions sets. The obtained ADPT equation systems are solved with the Eirola-Nevanlinna algorithm.
View Article and Find Full Text PDFA new iterative solver for the recently developed time-dependent auxiliary density perturbation theory is presented. It is based on the Eirola-Nevanlinna algorithm for large nonsymmetric linear equation systems. The new methodology is validated by static and dynamic polarizability calculations of small molecules.
View Article and Find Full Text PDFThe computation of the spin-rotation tensor within the framework of auxiliary density functional theory (ADFT) in combination with the gauge including atomic orbital (GIAO) scheme, to treat the gauge origin problem, is presented. For the spin-rotation tensor, the calculation of the magnetic shielding tensor represents the most demanding computational task. Employing the ADFT-GIAO methodology, the central processing unit time for the magnetic shielding tensor calculation can be dramatically reduced.
View Article and Find Full Text PDFThe density functional code deMon2k employs a fitted density throughout (Auxiliary Density Functional Theory), which offers a great speed advantage without sacrificing necessary accuracy. Powerful Quantum Mechanical/Molecular Mechanical (QM/MM) approaches are reviewed. Following an overview of the basic features of deMon2k that make it efficient while retaining accuracy, three QM/MM implementations are compared and contrasted.
View Article and Find Full Text PDF