Chemotherapy-induced neuropathy represents the main dose-limiting toxicity of several anticancer drugs, such as oxaliplatin, leading to chronic pain and an impairment of the quality of life. Echinacea purpurea n-hexane extract (EP -R ; rich in alkamides) and butanolic extract (EP -R ; rich in polyphenols) have been characterized and tested in an in vivo model of oxaliplatin-induced neuropathic pain, addressing the endocannabinoid system with alkamides and counteracting the redox imbalance with polyphenols. Thermal hypersensitivity was evaluated by the Cold Plate test.
View Article and Find Full Text PDFAcmella oleracea L. is an edible and medicinal plant commonly known for its local anaesthetic effect induced by the alkylamide spilanthol. It is also rich of secondary metabolites of biological interest, mainly phenolic acids and glycosylated flavonoids.
View Article and Find Full Text PDFPaper-based biosensors featuring immunoconjugated gold nanoparticles have gained extraordinary momentum in recent times as the platform of choice in key cases of field applications, including the so-called rapid antigen tests for SARS-CoV-2. Here, we propose a revision of this format, one that may leverage on the most recent advances in materials science and data processing. In particular, we target an amplifiable DNA rather than a protein analyte, and we replace gold nanospheres with anisotropic nanorods, which are intrinsically brighter by a factor of ~ 10, and multiplexable.
View Article and Find Full Text PDFEchinacea purpurea is a plant cultivated worldwide for its pharmaceutical properties, mainly related to the stimulation of the immune system in the treatment of respiratory infections. The cypselas (fruits) of E. purpurea were examined in order to investigate the presence, localization and potential function(s) of endophytic microorganisms.
View Article and Find Full Text PDFMedicinal plants (MPs) have been used since antiquity in traditional and popular medicine, and they represent a very important source of bioactive molecules, including antibiotic, antiviral, and antifungal molecules. Such compounds are often of plant origin, but in some cases, an origin or a modification from plant microbiota has been shown. Actually, the research continues to report the production of bioactive molecules by plants, but the role of plant-endophytic interaction is emerging.
View Article and Find Full Text PDFL. is an important medicinal plant, commonly known as the toothache plant. It is a rich source of secondary metabolites used for the treatment of different human disorders.
View Article and Find Full Text PDFHistidine biosynthesis is one of the most characterized metabolic routes for its antiquity and its central role in cellular metabolism; indeed, it represents a cross-road between nitrogen metabolism and de novo synthesis of purines. This interconnection is due to the activity of imidazole glycerol phosphate synthase, a heterodimeric enzyme constituted by the products of two his genes, hisH and hisF, encoding a glutamine amidotransferase and a cyclase, respectively. Despite their interaction was suggested by several in vitro experiments, their in vivo complex formation has not been demonstrated.
View Article and Find Full Text PDFThe insurgence of antibiotic resistance and emergence of multidrug-resistant (MDR) pathogens prioritize research to discover new antimicrobials. In this context, medicinal plants produce bioactive compounds of pharmacological interest: some extracts have antimicrobial properties that can contrast different pathogens. For such a purpose, L.
View Article and Find Full Text PDFThe role of the interaction(s) between medicinal plants (MPs) and their endophytes (bacterial microbiome) in the production of bioactive compounds (BCs) with therapeutic properties is emerging. Here, we propose Echinacea purpurea (L.) Moench as a new model to reveal the intimate crosstalk between MPs and bacterial endophytes, aiming to discover (new) BCs.
View Article and Find Full Text PDFThe controversial anti-proliferative effects of Echinacea purpurea (L.) Moench (Asteraceae) might be related to different plant metabolites contained in plant samples, extracts and products. The influence of bacterial endophytes on the synthesis of bioactive compounds in the medicinal plants has been previously demonstrated but there are only few studies addressing anticancer effects and mechanisms of E.
View Article and Find Full Text PDFBackground: Echinacea-endophyte interaction might affect plant secondary metabolites content and influence bacterial colonization specificity and plant growth, but the underlying mechanisms need deepening. An in vitro model, in which E. purpurea axenic plants as host species and E.
View Article and Find Full Text PDFThe differences in volatile profile of plants not-inoculated (EpC) and inoculated with their endophytes from roots (EpR) and stem/leaves (EpS/L) were analysed and compared by GC-FID/GC-MS in an model. Non-terpenes and sesquiterpene hydrocarbons were the most abundant classes with an opposite behaviour of EpS/L showing a decreased emission of sesquiterpenes and an increase of non-terpene derivatives. The main compounds obtained from EpS/L were ()-8-dodecen-1-ol and 1-pentadecene, while germacrene D and β-caryophyllene were the key compounds in EpC and EpR.
View Article and Find Full Text PDFA key factor in the study of plant-microbes interactions is the composition of plant microbiota, but little is known about the factors determining its functional and taxonomic organization. Here we investigated the possible forces driving the assemblage of bacterial endophytic and rhizospheric communities, isolated from two congeneric medicinal plants, Echinacea purpurea (L.) Moench and Echinacea angustifolia (DC) Heller, grown in the same soil, by analysing bacterial strains (isolated from three different compartments, i.
View Article and Find Full Text PDFThe influence of the interaction(s) between the medicinal plant Echinacea purpurea (L.) Moench and its endophytic communities on the production of alkamides is investigated. To mimic the in vivo conditions, we have set up an infection model of axenic in vitro E.
View Article and Find Full Text PDFWe announce here the draft genome sequence of sp. strain EpSL27, isolated from the stem and leaves of the medicinal plant and able to inhibit human-pathogenic bacterial strains. The genome sequencing of this strain may lead to the identification of genes involved in the production of antimicrobial molecules.
View Article and Find Full Text PDFIn this announcement, we detail the draft genome sequence of the sp. strain Ep R1, isolated from the roots of the medicinal plant The elucidation of this genome sequence may allow the identification of genes associated with the production of antimicrobial compounds.
View Article and Find Full Text PDFIn recent years, there has been increasing interest in plant microbiota; however, despite medicinal plant relevance, very little is known about their highly complex endophytic communities. In this work, we report on the genomic and phenotypic characterization of the antimicrobial compound producer Rheinheimera sp. EpRS3, a bacterial strain isolated from the rhizospheric soil of the medicinal plant Echinacea purpurea.
View Article and Find Full Text PDFEssential oils (EOs) are known to inhibit the growth of a wide range of microorganisms. Particularly interesting is the possible use of EOs to treat multidrug-resistant cystic fibrosis (CF) pathogens. We tested the essential oil (EO) from Origanum vulgare for in vitro antimicrobial activity, against three of the major human opportunistic pathogens responsible for respiratory infections in CF patients; these are methicillin-resistant Staphylococcus aureus, Stenotrophomonas maltophilia and Achromobacter xylosoxidans.
View Article and Find Full Text PDFWe announce here the draft genome sequence of Pseudomonas sp. strain EpS/L25, isolated from the stem/leaves of the medicinal plant Echinacea purpurea This genome will allow for comparative genomics in order to identify genes associated with the production of bioactive compounds and antibiotic resistance.
View Article and Find Full Text PDFOne of the major unanswered questions with respect to the commercial use of genetic transformation in woody plants is the stability of the transgene expression over several decades within the same individual. Gene expression is strongly affected by the copy number which has been integrated into the plant genome and by the local DNA features close to the integration sites. Because woody plants cannot be subjected to selfing or backcrossing to modify the transgenic allelic structure without affecting the valuable traits of the cultivar, molecular characterization of the transformation event is therefore crucial.
View Article and Find Full Text PDFIn this study wild type Nicotiana langsdorffii plants were genetically transformed by the insertion of the rat gene (gr) encoding the glucocorticoid receptor or the rolC gene and exposed to water and heat stress. Water stress was induced for 15 days by adding 20% PEG 6000 in the growth medium, whereas the heat treatment was performed at 50 °C for 2 h, after that a re-growing capability study was carried out. The plant response to stress was investigated by determining electrolyte leakage, dry weight biomass production and water content.
View Article and Find Full Text PDFNicotiana langsdorffii plants, wild and transgenic for the Agrobacterium rhizogenes rol C gene and the rat glucocorticoid receptor (GR) gene, were exposed to different abiotic stresses (high temperature, water deficit, and high chromium concentrations). An untargeted metabolomic analysis was carried out in order to investigate the metabolic effects of the inserted genes in response to the applied stresses and to obtain a comprehensive profiling of metabolites induced during abiotic stresses. High-performance liquid chromatography separation (HPLC) coupled to high-resolution mass spectrometry (HRMS) enabled the identification of more than 200 metabolites, and statistical analysis highlighted the most relevant compounds for each plant treatment.
View Article and Find Full Text PDFRecently our findings have shown that the integration of the gene coding for the rat gluco-corticoid receptor (GR receptor) in Nicotiana langsdorffii plants induced morphophysiological effects in transgenic plants through the modification of their hormonal pattern. Phytohormones play a key role in plant responses to many different biotic and abiotic stresses since a modified hormonal profile up-regulates the activation of secondary metabolites involved in the response to stress. In this work transgenic GR plants and isogenic wild type genotypes were exposed to metal stress by treating them with 30ppm cadmium(II) or 50ppm chromium(VI).
View Article and Find Full Text PDFBackground: The World Anti-Doping Agency fears the use of gene doping to enhance athletic performances. Thus, a bioanalytical approach based on end point PCR for detecting markers' of transgenesis traceability was developed.
Results: A few sequences from two different vectors using an animal model were selected and traced in different tissues and at different times.