Objectives: A feasibility proof-of-concept study was conducted to assess the effects of acute tibial nerve stimulation (TNS) on the central nervous system in healthy volunteers using functional magnetic resonance imaging (fMRI).
Materials And Methods: Fourteen healthy volunteers were included in a prospective, single-site study conducted on a clinical 3T MRI scanner. Four scans of functional MRI, each lasting 6 min, were acquired: two resting-state fMRI scans (prior and following the TNS intervention) and in-between two fMRI scans, both consisting of alternating rest periods and noninvasive acute transcutaneous TNS (TTNS).
The aim of this exploratory study was the assessment of the metabolic profiles of persons with complete spinal cord injury (SCI) in three region-of-interests (pons, cerebellar vermis, and cerebellar hemisphere), with magnetic resonance spectroscopy, and their correlations to clinical scores. Group differences and association between metabolic and clinical scores were examined. Fifteen people with chronic SCI (cSCI), five people with subacute SCI (sSCI) and fourteen healthy controls were included.
View Article and Find Full Text PDFAfter spinal cord injury (SCI), reorganization processes and changes in brain connectivity occur. Besides the sensorimotor cortex, the subcortical areas are strongly involved in motion and executive control. This exploratory study focusses on the cerebellum and vermis.
View Article and Find Full Text PDFDiffusion kurtosis imaging (DKI) is applied to gain insights into the microstructural organization of brain tissues. However, the reproducibility of DKI outside brain white matter, particularly in combination with advanced estimation to remedy its noise sensitivity, remains poorly characterized. Therefore, in this study, we investigated the variability and reliability of DKI metrics while correcting implausible values with a fit method called mean kurtosis (MK)-Curve.
View Article and Find Full Text PDFBackground: Growing evidence underscores the utility of ketamine as an effective and rapid-acting treatment option for major depressive disorder (MDD). However, clinical outcomes vary between patients. Predicting successful response may enable personalized treatment decisions and increase clinical efficacy.
View Article and Find Full Text PDFObjectives: In spinal cord injury (SCI), the primary mechanical injury is followed by secondary sequelae that develop over the subsequent months and manifests in biochemical, functional, and microstructural alterations, at the site of direct injury but also in the spinal cord tissue above and below the actual lesion site. Noninvasive magnetic resonance spectroscopy (MRS) can be used to assess biochemical modulation occurring in the secondary injury phase, in addition to and supporting conventional MRI, and might help predict and improve patient outcome. In this article, we aimed to examine the metabolic levels in the pons of subacute SCI by means of in vivo proton MRS at 3 T and explore the association to clinical scores.
View Article and Find Full Text PDFKetamine exerts its rapid antidepressant effects via modulation of the glutamatergic system. While numerous imaging studies have investigated the effects of ketamine on a functional macroscopic brain level, it remains unclear how altered glutamate metabolism and changes in brain function are linked. To shed light on this topic we here conducted a multimodal imaging study in healthy volunteers (N = 23) using resting state fMRI and proton (H) magnetic resonance spectroscopy (MRS) to investigate linkage between metabolic and functional brain changes induced by ketamine.
View Article and Find Full Text PDFObjective: To determine whether cervical cord levels of metabolites are associated with pain sensation after spinal cord injury (SCI) by performing magnetic resonance spectroscopy in patients with SCI with and without neuropathic pain (NP).
Methods: Cervical cord single-voxel spectroscopic data of 24 patients with SCI (14 with NP, 10 pain-free) and 21 healthy controls were acquired at C2/3 to investigate metabolite ratios associated with neuroinflammation (choline-containing compounds to myoinositol [tCho/mI]) and neurodegeneration (total N-acetylaspartate to myo-inositol [tNAA/mI]). NP levels were measured, and Spearman correlation tests assessed associations between metabolite levels, cord atrophy, and pinprick score.
Background: The optimization of magnetic resonance spectroscopy (MRS) sequences allows improved diagnosis and prognosis of neurological and psychological disorders. Thus, to assess the test-retest and intersequence reliability of such MRS sequences in quantifying metabolite concentrations is of clinical relevance.
Purpose: To evaluate the test-retest and intersequence reliability of three MRS sequences to estimate GABA and Glx = Glutamine+Glutamate concentrations in the human brain.
Purpose To investigate metabolic changes in chronic spinal cord injury (SCI) by applying MR spectroscopy in the cervical spinal cord. Materials and Methods Single-voxel short-echo spectroscopic data in study participants with chronic SCI and healthy control subjects were prospectively acquired in the cervical spinal cord at C2 above the level of injury between March 2016 and January 2017 and were compared between groups. Concentrations of total N-acetylaspartate (tNAA), myo-inositol (mI), total choline-containing compounds (tCho), creatine, and glutamine and glutamate complex were estimated from the acquired spectra.
View Article and Find Full Text PDFPurpose: The transverse relaxation times T of 17 metabolites in vivo at 3T is reported and region specific differences are addressed.
Methods: An echo-time series protocol was applied to one, two, or three volumes of interest with different fraction of white and gray matter including a total number of 106 healthy volunteers and acquiring a total number of 128 spectra. The data were fitted with the 2D fitting tool ProFit2, which included individual line shape modeling for all metabolites and allowed the T calculation of 28 moieties of 17 metabolites.
Semin Ultrasound CT MR
April 2017
This article reviews the current state of magnetic resonance spectroscopy applied in the human spinal cord with respect to its clinical applications and challenges in comparison to investigations in the human brain. Results from several disease processes affecting the spinal cord are presented, and potential advantages of applying clinical MRS in their investigation are emphasized.
View Article and Find Full Text PDFMRS enables insight into the chemical composition of central nervous system tissue. However, technical challenges degrade the data quality when applied to the human spinal cord. Therefore, to date detection of only the most prominent metabolite resonances has been reported in the healthy human spinal cord.
View Article and Find Full Text PDF