There is evidence for a disturbed perception and processing of emotional information in pathological anxiety. Using a rat model of trait anxiety generated by selective breeding, we previously revealed differences in challenge-induced neuronal activation in fear/anxiety-related brain areas between high (HAB) and low (LAB) anxiety rats. To confirm whether findings generalize to other species, we used the corresponding HAB/LAB mouse model and investigated c-Fos responses to elevated open arm exposure.
View Article and Find Full Text PDFBackground: To investigate neurobiological correlates of trait anxiety, CD1 mice were selectively bred for extremes in anxiety-related behavior, with high (HAB) and low (LAB) anxiety-related behavior mice additionally differing in behavioral tests reflecting depression-like behavior.
Methodology/ Principal Findings: In this study, microarray analysis, in situ hybridization, quantitative real-time PCR and immunohistochemistry revealed decreased expression of the vasopressin gene (Avp) in the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei of adult LAB mice compared to HAB, NAB (normal anxiety-related behavior) and HABxLAB F1 intercross controls, without detecting differences in receptor expression or density. By sequencing the regions 2.
In a previous work it was demonstrated that emotional stressors trigger the in vivo release of the neuropeptide substance P (SP) in brain areas known to be implicated in stress and anxiety mechanisms, such as the amygdala, lateral septum, nucleus accumbens, and locus coeruleus. However, the specific role of SP within the hypothalamic paraventricular nucleus (PVN), the critical site of the neuroendocrine stress axis, is unclear. Studies performed in neurokinin-1-receptor (NK-1R) knockout mice have provided conflicting results.
View Article and Find Full Text PDFThe impaired extinction of acquired fear is a core symptom of anxiety disorders, such as post-traumatic stress disorder, phobias or panic disorder, and is known to be particularly resistant to existing pharmacotherapy. We provide here evidence that a similar relationship between trait anxiety and resistance to extinction of fear memory can be mimicked in a psychopathologic animal model. Wistar rat lines selectively bred for high (HAB) or low (LAB) anxiety-related behaviour were tested in a classical cued fear conditioning task utilizing freezing responses as a measure of fear.
View Article and Find Full Text PDFFollowing secretion from the posterior pituitary, the neuropeptide vasopressin (AVP) stimulates the kidney to retain water, and when released centrally it can contribute to anxiety- and depression-like behaviours. We hypothesized that CD1 mice bred for low trait anxiety (LAB) suffer from a deficit in AVP. Both osmotically stimulated peripheral secretion and intra-paraventricular nucleus (PVN) release of AVP were found decreased in LAB animals compared with normal anxiety (NAB) or high anxiety (HAB) controls.
View Article and Find Full Text PDFBackground: The enhanced depression-like behavior in the forced swim test displayed by rats selectively bred for high anxiety-related behavior (HAB) as compared with their low anxiety counterparts (LAB) is abolished by chronic paroxetine treatment. The aim of the present study was to identify neuronal substrates underlying this treatment response in HABs.
Methods: The HAB rats received paroxetine (10 mg/kg/day) for 24 days via drinking water, and drug-induced modulation of neuronal activation patterns in response to forced swimming was mapped with the expression of the immediate early gene c-Fos as marker.