Publications by authors named "Patrik Lundin"

Currently, there is a need for new technology for in-line or fast at-line assessment of solid material porosity. One specific gap is a fast technology to be used in connection to roller compaction (RC) manufacturing, where the porosity of the RC ribbons is critical to the manufacturing of tablets of the right tensile strength and disintegration properties. In this paper, the development of an at-line technology for fast, non-destructive assessment of porosity of RC ribbons is reported.

View Article and Find Full Text PDF

Further improvements in the clinical care of our most vulnerable patients-preterm infants-are needed. Novel diagnostic and surveillance tools facilitate such advances. The GASMAS technique has shown potential to become a tool to, noninvasively, monitor gas in the lungs of preterm infants, by placing a laser source and a detector on the chest wall skin.

View Article and Find Full Text PDF

There is a need to further improve the clinical care of our most vulnerable patients-preterm infants. Novel diagnostic and treatment tools facilitate such advances. Here, we evaluate a potential percutaneous optical monitoring tool to assess the oxygen and water vapor content in the lungs of preterm babies.

View Article and Find Full Text PDF

The use of diffuse, highly reflective optical components, in particular, a hemispherical BaSO diffuser, at the point of light injection into non-transparent or turbid media was evaluated as a means to increase the measurement sensitivity of spectroscopic absorption measurements. By performing the light injection from, e.g.

View Article and Find Full Text PDF

A highly scattering porous ceramic sample is employed as a miniature random-scattering multipass gas cell for monitoring of oxygen content in opaque media, that is, wood materials in the present work. Gas in scattering media absorption spectroscopy is used by employing a 760 nm near-infrared laser diode to probe the absorption of molecular oxygen enclosed in the pores of the ceramic material working as the multipass gas cell, with a porosity of 75%. A path length enhancement of approximately 26 times and a signal-to-noise ratio of about 60 were obtained for the ceramic sample used in this work.

View Article and Find Full Text PDF

Background: Newborn infants may have pulmonary disorders with abnormal gas distribution, e.g., respiratory distress syndrome.

View Article and Find Full Text PDF

Preterm newborn infants have a high morbidity rate. The most frequently affected organs where free gas is involved are the lungs and intestines. In respiratory distress syndrome, both hyperexpanded and atelectatic (collapsed) areas occur, and in necrotizing enterocolitis, intramural gas may appear in the intestine.

View Article and Find Full Text PDF

Laser-induced fluorescence was used to evaluate the classification and quality of Chinese oolong teas and jasmine teas. The fluorescence of four different types of Chinese oolong teas-Guangdong oolong, North Fujian oolong, South Fujian oolong, and Taiwan oolong was recorded and singular value decomposition was used to describe the autofluoresence of the tea samples. Linear discriminant analysis was used to train a predictive chemometric model and a leave-one-out methodology was used to classify the types and evaluate the quality of the tea samples.

View Article and Find Full Text PDF

Simultaneous assessment of the spectroscopic absorption signal of gas enclosed in a scattering medium and the corresponding optical path length of the probing light is demonstrated using a single setup. Sensitive gas absorption measurements are performed by a tunable diode laser using wavelength-modulation spectroscopy, while the path length is evaluated by the frequency-modulated cw technique commonly used in the field of telecommunication. Proof-of-principle measurements are demonstrated with water vapor as the absorbing gas and using polystyrene foam as an inhomogeneously scattering medium.

View Article and Find Full Text PDF

We present optical methods at a wide range of wavelengths for remote classification of birds. The proposed methods include eye-safe fluorescence and depolarization lidar techniques, passive scattering spectroscopy, and infrared (IR) spectroscopy. In this paper we refine our previously presented method of remotely classifying birds with the help of laser-induced β-keratin fluorescence.

View Article and Find Full Text PDF

An active phase-controlling scheme based on a proportional-integral-derivative-controlled piezoelectric transducer is presented with the purpose of stabilizing a quasi-zero-background absorption spectrometer. A fiber-based balanced Michelson interferometer is used, and absorption due to a gas sample in one of its arms results in an increased light signal to a detector, which otherwise, thanks to destructive interference, experiences a very low light level. With the presented approach, the sensitivity of already potent absorption measurement techniques, e.

View Article and Find Full Text PDF

Results from field experiments using a fluorescence lidar system to monitor movements of insects are reported. Measurements over a river surface were made at distances between 100 and 300 m, detecting, in particular, damselflies entering the 355 nm pulsed laser beam. The lidar system recorded the depolarized elastic backscattering and two broad bands of laser-induced fluorescence, with the separation wavelength at 500 nm.

View Article and Find Full Text PDF

We present a method for remote classification of birds based on eye-safe fluorescence lidar techniques. Mechanisms of quenching are discussed. Plumage reflectance is related to plumage fluorescence.

View Article and Find Full Text PDF

A novel technique for studying photon propagation in scattering media is proposed and demonstrated, as is believed, for the first time. Photons propagating through the medium, from a frequency-ramped single-mode diode laser, meet a reference beam from the same source, at a common detector, and beat frequencies corresponding to various temporal delays are observed by heterodyne techniques. Fourier transformation directly yields the temporal dispersion curve.

View Article and Find Full Text PDF