Transparent and conductive films (TCFs) are of great technological importance. Their high transmittance, electrical conductivity, and mechanical strength make single-walled carbon nanotubes (SWCNTs) a good candidate for the raw material for TCFs. Despite the ballistic transport in individual SWCNTs, electrical conductivity of SWCNT networks is limited by low efficiency of charge tunneling between the tube elements.
View Article and Find Full Text PDFIn floating catalyst chemical vapor deposition (FC-CVD), tuning chirality distribution and obtaining narrow chirality distribution of single-walled carbon nanotubes (SWCNTs) is challenging. Herein, by introducing various amount of CO in FC-CVD using CO as a carbon source, we have succeeded in directly synthesizing SWCNT films with tunable chirality distribution as well as tunable colors. In particular, with 0.
View Article and Find Full Text PDFMolecular self-assembly due to chemical interactions is the basis of bottom-up nanofabrication, whereas weaker intermolecular forces dominate on the scale of macromolecules. Recent advances in synthesis and characterization have brought increasing attention to two- and mixed-dimensional heterostructures, and it has been recognized that van der Waals (vdW) forces within the structure may have a significant impact on their morphology. Here, we suspend single-walled carbon nanotubes (SWCNTs) on graphene to create a model system for the study of a 1D-2D molecular interface through atomic-resolution scanning transmission electron microscopy observations.
View Article and Find Full Text PDFWe have developed the floating catalyst chemical vapor deposition (FCCVD) synthesis of single walled carbon nanotubes (SWCNTs) using C2H4 hydrocarbon as a carbon source and iron nanoparticles as the catalyst in an environmentally friendly and economical process. For the first time, ethylene was used as the only carbon source in FCCVD with N2 as the main carrier gas. No sulphur and less than 15% H2 in a N2 carrier gas were used.
View Article and Find Full Text PDFWe report the direct and dry deposition of transparent conducting films (TCFs) of aerosol-synthesized single-walled carbon nanotubes (SWNTs) using a thermophoretic precipitator (TP) designed for the uniform and efficient deposition of aerosol-synthesized nanomaterials on 50 mm wafers or similarly sized polymer substrates. The optical and electrical performance of the fabricated TCFs match or surpass the published results achieved using a filter-based collection of aerosol-synthesized SWNTs, and TCFs with sheet resistances of 60 Ω/sq. at 87.
View Article and Find Full Text PDFAlthough it is known that the Raman spectroscopic signature of single-walled carbon nanotubes (SWCNTs) is highly chirality dependent, using Raman spectroscopy with several laser excitations as a tool for quantifying fraction of either metallic or semiconducting nanotubes in a sample has become a widely used analytical method. In this work, using the electron diffraction technique as a basis, we have examined the validity of Raman spectroscopy for quantitative evaluation of metallic fractions (M%) in single-walled carbon nanotube samples. Our results show that quantitative Raman spectroscopic evaluations of M% by using several discrete laser lines, either by using integrated intensities of chirality-associated radial breathing modes (RBMs) or, as has been more commonly utilized in recent studies, by statistically counting the numbers of RBMs can be misrepresentative.
View Article and Find Full Text PDFTransparent conducting films (TCFs) are critical components of many optoelectronic devices that pervade modern technology. Due to their excellent optoelectronic properties and flexibility, single-walled carbon nanotube (SWNT) films are regarded as an important alternative to doped metal oxides or brittle and expensive ceramic materials. Compared with liquid-phase processing, the dry floating catalyst chemical vapor deposition (FCCVD) method without dispersion of carbon nanotubes (CNTs) in solution is more direct and simpler.
View Article and Find Full Text PDFSingle-walled carbon nanotube (SWCNT) films have great potential to replace indium tin oxide films for applications in transparent and conductive electronics. Here we report a high yield production of SWCNT transparent conducting films (TCFs) by the floating catalyst chemical vapor deposition method using ethanol as the carbon source. To the best of our knowledge, this is the first report regarding SWCNT TCFs using ethanol as the carbon source.
View Article and Find Full Text PDFSingle-walled carbon nanotubes (SWCNTs) show great potential as an active material in electronic and photonic devices, but their applicability is currently limited by shortcomings in existing deposition methods. SWCNTs can be dispersed from liquid solutions; however, their poor solubility requires the use of surfactants and ultrasonication, causing defects and degradation in device performance. Likewise, the high temperatures required by their chemical vapor deposition growth limit substrates on which SWCNTs can be directly grown.
View Article and Find Full Text PDFWe report the fabrication of thin film transistors (TFTs) from networks of nonbundled single-walled carbon nanotubes with controlled surface densities. Individual nanotubes were synthesized by using a spark generator-based floating catalyst CVD process. High uniformity and the control of SWCNT surface density were realized by mixing of the SWCNT aerosol in a turbulent flow mixer and monitoring the online number concentration with a condensation particle counter at the reactor outlet in real time.
View Article and Find Full Text PDFThe optoelectronic performance of thin films of single-walled carbon nanotubes (SWCNTs) was studied with respect to the properties of both individual nanotubes and their bundles. The SWCNTs were synthesized in a hot wire generator aerosol reactor, collected by gas filtration and dry-transferred onto various substrates. By thus completely avoiding liquid dispersion steps, we were able to avoid any artifacts from residual surfactants or sonication.
View Article and Find Full Text PDF