This study aimed to develop a bioavailability-based effects assessment method for nickel (Ni) to derive acute freshwater environmental thresholds in Europe. The authors established a reliable acute freshwater Ni ecotoxicity database covering 63 different freshwater species, and the existing acute Ni bioavailability models for invertebrates were revised. A single average invertebrate bioavailability model was proposed, in which the protective effects of Ca2+ and Mg2+ on Ni2+ toxicity were integrated as a single-site competition effect at the Ni biotic ligand.
View Article and Find Full Text PDFPopulation models can be a useful tool for ecological risk assessment to increase ecological realism. In the present study, population models were used to extrapolate toxicity test results of four metals (Ag, Cu, Ni, Zn) to the population level. In total, three primary producers, five invertebrate species, and five fish species were covered.
View Article and Find Full Text PDFPopulation models are increasingly used to predict population-level effects of chemicals. For trout, most toxicity data are available on early-life stages, but this may cause population models to miss true population-level effects. We predicted population-level effects of copper (Cu) on a brook trout (Salvelinus fontinalis) population based on individual-level effects observed in either a life-cycle study or an early-life stage study.
View Article and Find Full Text PDFEnviron Toxicol Chem
February 2024
Chronic copper (Cu) bioavailability models have been successfully implemented in European risk assessment frameworks and compliance evaluations. However, they were developed almost two decades ago, which calls for an update. In the study, we present updated chronic Cu bioavailability models for invertebrates and algae.
View Article and Find Full Text PDFEcological risk assessment (ERA) of metals typically starts from standardized toxicity tests, the data from which are then extrapolated to derive safe concentrations for the envisioned protection goals. Because such extrapolation in conventional ERA lacks ecological realism, ecological modeling is considered as a promising new approach for extrapolation. Many published population models are complex, that is, they include many processes and parameters, and thus require an extensive dataset to calibrate.
View Article and Find Full Text PDFBioavailability has been taken into account in the regulation of nickel in freshwater ecosystems in Europe for over a decade; during that time a significant amount of new information has become available covering both the sensitivity of aquatic organisms to nickel toxicity and bioavailability normalization. The ecotoxicity database for chronic nickel toxicity to freshwater organisms has been updated and now includes 358 individual data points covering a total of 53 different species, all of which are suitable for bioavailability normalization to different water chemistry conditions. The bioavailability normalization procedure has also been updated to include updates to the bioavailability models that enable more sensitive water chemistry conditions to be covered by the model predictions.
View Article and Find Full Text PDFIntegr Environ Assess Manag
July 2023
European legislations frequently focus on substances that are of potential concern to human or environmental health, such as "priority substances" under the Water Framework Directive 2000/60/EC ("WFD") that are identified as substances posing a significant risk to or via the aquatic environment. The EU REACH regulation also requires the assessment of the environmental risks of chemicals put on the EU market. To properly assess the potential risk of a substance, high-quality representative monitoring data should be compared with a safe threshold concentration.
View Article and Find Full Text PDFMost regulatory ecological risk-assessment frameworks largely disregard discrepancies between the laboratory, where effects of single substances are assessed on individual organisms, and the real environment, where organisms live together in populations and are often exposed to multiple simultaneously occurring substances. We assessed the capability of individual-based models (IBMs) with a foundation in the dynamic energy budget (DEB) theory to predict combined effects of chemical mixtures on populations when they are calibrated on toxicity data of single substances at the individual level only. We calibrated a DEB-IBM for Daphnia magna for four compounds (pyrene, dicofol, α-hexachlorocyclohexane, and endosulfan), covering different physiological modes of action.
View Article and Find Full Text PDFSTOFFENMANAGER® and the Advanced REACH Tool (ART) are recommended tools by the European Chemical Agency for regulatory chemical safety assessment. The models are widely used and accepted within the scientific community. STOFFENMANAGER® alone has more than 37 000 users globally and more than 310 000 risk assessment have been carried out by 2020.
View Article and Find Full Text PDFPopulation models are increasingly being used to extrapolate individual-level effects of chemicals, including metals, to population-level effects. For metals, it is also important to take into account their bioavailability to correctly predict metal toxicity in natural waters. However, to our knowledge, no models exist that integrate metal bioavailability into population modeling.
View Article and Find Full Text PDFDriven by Regulation (EC) No. 1272/2008 and the European Water Framework Directive 2000/60/EC, we have re-evaluated the available chronic freshwater ecotoxicity data for ionic silver (Ag) using strict data quality criteria. In addition, we generated new chronic ecotoxicity data for species potentially sensitive to Ag (the rotifer Brachionus calyciflorus, the cyanobacteria Anabaena flos-aquae, and the aquatic plant Lemna minor) using Ag nitrate as the test substance.
View Article and Find Full Text PDFMechanistic population models are gaining considerable interest in ecological risk assessment. The dynamic energy budget approach for toxicity (DEBtox) and the general unified threshold model for survival (GUTS) are well-established theoretical frameworks that describe sublethal and lethal effects of a chemical stressor, respectively. However, there have been limited applications of these models for mixtures of chemicals, especially to predict long-term effects on populations.
View Article and Find Full Text PDFThe generalized bioavailability model (gBAM) has been proposed as an alternative to the biotic ligand model (BLM) for modeling bioavailability and chronic toxicity of copper (Cu). The gBAM combines a log-linear effect of pH on free Cu ion toxicity with BLM-type parameters for describing the protective effects of major cations (calcium [Ca] , magnesium [Mg] , and sodium [Na] ). In the present study, a Windermere Humic Aqueous Model (WHAM) VII-based gBAM for fish was parametrized based on an existing chronic (30-d) dataset of juvenile rainbow trout (Oncorhynchus mykiss).
View Article and Find Full Text PDFEnvironmental risk assessment (ERA) of chemicals aims to protect populations, communities, and ecosystems. Population models are considered more frequent in ERA because they can bridge the gap between the individual and the population level. Lymnaea stagnalis (the great pond snail) is an organism that is particularly sensitive to various metals, including copper (Cu).
View Article and Find Full Text PDFMeClas is a web-based tool to generate (eco)toxicity hazard categories and corresponding classification & labelling information of inorganic metal-containing complex materials such as ores, concentrates, intermediates or alloys for which the manual application of the GHS/CLP rules is very complex and requires a high level of consistency. The tool comprises several tiers, aimed at the progressive refinement of classification through recognition of specific mineral content, speciation/mineralogy up to bio-availability corrections. Where relevant in a regional jurisdiction (EU and US), mandatory classification references are used complementary to high quality (eco)toxicity reference values (ERV/TRV) and self-classifications.
View Article and Find Full Text PDFThe US Environmental Protection Agency's (USEPA's) ambient water quality criteria (AWQC) for lead (Pb) in salt water were developed in 1984. The acute and chronic criteria are 210 and 8.1 μg/L dissolved Pb, respectively.
View Article and Find Full Text PDFThe main objective of the present study was to derive ecologically relevant effect threshold concentrations of (dissolved) Pb for selected European Union (EU) freshwater rivers, using the 2008 EU Voluntary Risk Assessment Report as a starting point and more advanced methodologies than those used in the Voluntary Risk Assessment Report. This included 1) implementing more robust quality criteria for selecting chronic toxicity data; 2) the conversion of total to dissolved Pb concentrations using a combination of an empirical equation relating inorganic Pb solubility and geochemical speciation modeling to account for effects of dissolved organic matter; 3) the use of bioavailability models for chronic toxicity for species belonging to 3 different trophic levels; and 4) the use of robust methods for large data set handling (such as species sensitivity distribution [SSD] analysis). The authors used published bioavailability models for an algal species (Pseudokirchneriella subcapitata) and a daphnid (Ceriodaphnia dubia) and developed a new model for the fathead minnow (Pimephales promelas).
View Article and Find Full Text PDFThe environmental quality standard for Ni in the European Commission's Water Framework Directive is bioavailability based. Although some of the available chronic Ni bioavailability models are validated only for pH ≤ 8.2, a considerable fraction of European surface waters has a pH > 8.
View Article and Find Full Text PDFThe paper describes the inhalation nickel (Ni) exposure of humans via the environment for the regional scale in the EU, together with a tiered approach for assessing additional local exposure from industrial emissions. The approach was designed, in the context of REACH, for the purpose of assessing and controlling emissions and air quality in the neighbourhood of Ni producers and downstream users. Two Derived No Effect Level (DNEL) values for chronic inhalation exposure to total Ni in PM10 (20 and 60ngNi/m(3)) were considered.
View Article and Find Full Text PDFAfter the scientific development of biotic ligand models (BLMs) in recent decades, these models are now considered suitable for implementation in regulatory risk assessment of metals in freshwater bodies. The BLM approach has been described in many peer-reviewed publications, and the original complex BLMs have been applied in prospective risk assessment reports for metals and metal compounds. BLMs are now also recommended as suitable concepts for the site-specific evaluation of monitoring data in the context of the European Water Framework Directive.
View Article and Find Full Text PDFVertebrate testing under the European Union's regulation on Registration, Evaluation, Authorisation and Restriction of Chemical substances (REACH) is discouraged, and the use of alternative nontesting approaches such as quantitative structure-activity relationships (QSARs) is encouraged. However, robust QSARs predicting chronic ecotoxicity of organic compounds to fish are not available. The Ecological Structure Activity Relationships (ECOSAR) Class Program is a computerized predictive system that estimates the acute and chronic toxicity of organic compounds for several chemical classes based on their log octanol-water partition coefficient (K(OW)).
View Article and Find Full Text PDFMany jurisdictions around the globe have well-developed regulatory frameworks for the derivation and implementation of water quality guidelines (WQGs) or their equivalent (e.g. environmental quality standards, criteria, objectives or limits).
View Article and Find Full Text PDFEnviron Toxicol Chem
March 2013
Ecological risk assessments of chemicals can be informed by a suite of effect models, including population and food web models. In the risk assessments conducted under EU regulation 793/93/EC, however, applications of such effect models are extremely scarce and toxicity-extrapolation approaches are often used instead. The objective of the present study was to re-evaluate these risk assessments using two types of effect models: species sensitivity distributions (SSDs, non-mechanistic), and food web models (mechanistic).
View Article and Find Full Text PDFTotal concentrations of metals in soil are poor predictors of toxicity. In the last decade, considerable effort has been made to demonstrate how metal toxicity is affected by the abiotic properties of soil. Here this information is collated and shows how these data have been used in the European Union for defining predicted-no-effect concentrations (PNECs) of Cd, Cu, Co, Ni, Pb, and Zn in soil.
View Article and Find Full Text PDFAmbient concentrations of metals in surface waters have become an important consideration when establishing water quality criteria and conducting risk assessments. This study sought to estimate amounts of copper that may be released into fresh and estuarine waters considering ambient concentrations, toxicity thresholds, and bioavailability. Cumulative distribution functions of ambient copper concentrations were compared statistically for individual sites within 14 surface waters of North America and Europe to identify differences among mean distribution variables (e.
View Article and Find Full Text PDF