In rowing, mechanical power output is a key parameter for biophysical analyses and performance monitoring and should therefore be measured accurately. It is common practice to estimate on-water power output as the time average of the dot product of the moment of the handle force relative to the oar pin and the oar angular velocity. In a theoretical analysis we have recently shown that this measure differs from the true power output by an amount that equals the mean of the rower's mass multiplied by the rower's center of mass acceleration and the velocity of the boat.
View Article and Find Full Text PDFThe number of validation studies of commercially available foot pods that provide estimates of running speed is limited and these studies have been conducted under laboratory conditions. Moreover, internal data handling and algorithms used to derive speed from these pods are proprietary and thereby unclear. The present study investigates the use of foot contact time (CT) for running speed estimations, which potentially can be used in addition to the global positioning system (GPS) in situations where GPS performance is limited.
View Article and Find Full Text PDF