Publications by authors named "Patrick Wucherer"

Background: Virtual reality (VR)-based simulations offer rich opportunities for surgical skill training and assessment of surgical novices and experts. A structured evaluation and validation process of such training and assessment tools is necessary for effective surgical learning environments.

Objective: To develop and apply a classification system of surgeon-reported experience during operation of a VR vertebroplasty simulator.

View Article and Find Full Text PDF

Background: Despite the growing importance of medical simulation in education, there is limited guidance available on how to develop medical simulation environments, particularly with regard to technical and non-technical skills as well as to multidisciplinary operating room (OR) team training. We introduce a cognitive task analysis (CTA) approach consisting of interviews, structured observations, and expert consensus to systematically elicit information for medical simulator development. Specifically, our objective was to introduce a guideline for development and application of a modified CTA to obtain task demands of surgical procedures for all three OR professions with comprehensive definitions of OR teams' technical and non-technical skills.

View Article and Find Full Text PDF

Background Context: Virtual reality (VR)-based simulators offer numerous benefits and are very useful in assessing and training surgical skills. Virtual reality-based simulators are standard in some surgical subspecialties, but their actual use in spinal surgery remains unclear. Currently, only technical reviews of VR-based simulators are available for spinal surgery.

View Article and Find Full Text PDF

Background And Aim: Surgical flow disruptions occur frequently and jeopardize perioperative care and surgical performance. So far, insights into subjective and cognitive implications of intra-operative disruptions for surgeons and inherent consequences for performance are inconsistent. This study aimed to investigate the effect of surgical flow disruption on surgeon's intra-operative workload and technical performance.

View Article and Find Full Text PDF

We present a unique simulator-based methodology for assessing both technical and nontechnical (cognitive) skills for surgical trainees while immersed in a complete medical simulation environment. Further, we have included two crisis scenarios which allow for the evaluation of the effect of cognitive strategy selection on the low-level surgical skills. Training these mixed-mode scenarios can thereby be evaluated on our platform, allowing for improved assessment and a stronger foundation for credentialing, with the potential to reduce the occurrence of adverse events in the operating room.

View Article and Find Full Text PDF

We present the idea of a user interface concept, which resolves the challenges involved in the control of angiographic C-arms for their constant repositioning during interventions by either the surgeons or the surgical staff. Our aim is to shift the paradigm of interventional image acquisition workflow from the traditional control device interfaces to 'desired-view' control. This allows the physicians to only communicate the desired outcome of imaging, based on simulated X-rays from pre-operative CT or CTA data, while the system takes care of computing the positioning of the imaging device relative to the patient's anatomy through inverse kinematics and CT to patient registration.

View Article and Find Full Text PDF

Purpose: To design a surgical training environment based on task and crisis analysis of the surgical workflow.

Method: The environment consists of: (1) real surgical instruments that are augmented with realistic haptic feedback and VR capabilities, (2) human sensory channels such as tactile, auditory and visual in real time, and (3) the ability to facilitate deliberate exposure to adverse events enabling mediation of error recovery strategies.

Validation: Five surgeons were immersed in our medical simulation environment through task and crisis scenarios of a typical vertebroplasty workflow.

View Article and Find Full Text PDF