The power of adeno-associated viral (AAV)-directed evolution for identifying novel vector variants with improved properties is well established, as evidenced by numerous publications reporting novel AAV variants. However, most capsid variants reported to date have been identified using either replication-competent (RC) selection platforms or polymerase chain reaction-based capsid DNA recovery methods, which can bias the selection toward efficient replication or unproductive intracellular trafficking, respectively. A central objective of this study was to validate a functional transduction (FT)-based method for rapid identification of novel AAV variants based on AAV capsid mRNA expression in target cells.
View Article and Find Full Text PDFHum Gene Ther Methods
December 2019
Ongoing development of recombinant vectors based on adeno-associated virus (rAAV) is providing an increasingly powerful and widely used toolkit for gene transfer and genome editing applications. While conceptually simple, the system harbors considerable complexity that presents many potential pitfalls for the inexperienced user. The short inverted terminal repeats (ITRs) can prove to be particularly problematic during vector engineering due to inherent instability necessitating diligent quality control measures during vector manufacture.
View Article and Find Full Text PDFAdeno-associated virus (AAV) vectors have become one of the most widely used gene transfer tools in human gene therapy. Considerable effort is currently being focused on AAV capsid engineering strategies with the aim of developing novel variants with enhanced tropism for specific human cell types, decreased human seroreactivity, and increased manufacturability. Selection strategies based on directed evolution rely on the generation of highly variable AAV capsid libraries using methods such as DNA-family shuffling, a technique reliant on stretches of high DNA sequence identity between input parental capsid sequences.
View Article and Find Full Text PDF