Self-assembled plasmonic metamaterials are fabricated from silver nanoparticles covered with a silica shell. These metamaterials demonstrate topological darkness or selective suppression of reflection connected to global properties of the Fresnel coefficients. The optical properties of the studied structures are in good agreement with effective medium theory.
View Article and Find Full Text PDFIn an attempt to fabricate low index metamaterials by a bottom-up approach, meta-atoms constituted of silica-coated silver nanoparticles are assembled by a Langmuir-Schaefer technique into thin films of large area and well-controlled thickness. The silica shells ensure a constant distance between the silver cores, hence providing a constant coupling of the localized surface plasmon resonance (LSPR) of the nanoparticles in the assembled composite material. The optical response is studied by normal angle spectral reflectance measurements and by variable angle spectroscopic ellipsometry.
View Article and Find Full Text PDFWe report in this paper novel chemistry that addresses the problem of surfactant solubility in supercritical CO2 for metal nanoparticle synthesis. This new approach for the preparation of organic-functionalized inorganic nanoparticles relies on the reduction of a metal precursor in a CO2-containing insoluble polymer. Reduction of the metal with H2 leads to small nanocrystals stabilized by the polymer with a relatively small polydispersity.
View Article and Find Full Text PDF