BindingDB (bindingdb.org) is a public, web-accessible database of experimentally measured binding affinities between small molecules and proteins, which supports diverse applications including medicinal chemistry, biochemical pathway annotation, training of artificial intelligence models and computational chemistry methods development. This update reports significant growth and enhancements since our last review in 2016.
View Article and Find Full Text PDFThe CACHE challenges are a series of prospective benchmarking exercises to evaluate progress in the field of computational hit-finding. Here we report the results of the inaugural CACHE challenge in which 23 computational teams each selected up to 100 commercially available compounds that they predicted would bind to the WDR domain of the Parkinson's disease target LRRK2, a domain with no known ligand and only an apo structure in the PDB. The lack of known binding data and presumably low druggability of the target is a challenge to computational hit finding methods.
View Article and Find Full Text PDFThe macrodomain contained in the SARS-CoV-2 non-structural protein 3 (NSP3) is required for viral pathogenesis and lethality. Inhibitors that block the macrodomain could be a new therapeutic strategy for viral suppression. We previously performed a large-scale X-ray crystallography-based fragment screen and discovered a sub-micromolar inhibitor by fragment linking.
View Article and Find Full Text PDFOver the last five years, virtual screening of ultralarge synthesis on-demand libraries has emerged as a powerful tool for hit identification in drug discovery programs. As these libraries have grown to tens of billions of molecules, we have reached a point where it is no longer cost-effective to screen every molecule virtually. To address these challenges, several groups have developed heuristic search methods to rapidly identify the best molecules on a virtual screen.
View Article and Find Full Text PDFAmines and carboxylic acids are abundant chemical feedstocks that are nearly exclusively united via the amide coupling reaction. The disproportionate use of the amide coupling leaves a large section of unexplored reaction space between amines and acids: two of the most common chemical building blocks. Herein we conduct a thorough exploration of amine-acid reaction space via systematic enumeration of reactions involving a simple amine-carboxylic acid pair.
View Article and Find Full Text PDFCASP15 introduced a new category, ligand prediction, where participants were provided with a protein or nucleic acid sequence, SMILES line notation, and stoichiometry for ligands and tasked with generating computational models for the three-dimensional structure of the corresponding protein-ligand complex. These models were subsequently compared with experimental structures determined by x-ray crystallography or cryoEM. To assess these predictions, two novel scores were developed.
View Article and Find Full Text PDFProtein tyrosine phosphatase SHP2 mediates RAS-driven MAPK signaling and has emerged in recent years as a target of interest in oncology, both for treating with a single agent and in combination with a KRAS inhibitor. We were drawn to the pharmacological potential of SHP2 inhibition, especially following the initial observation that drug-like compounds could bind an allosteric site and enforce a closed, inactive state of the enzyme. Here, we describe the identification and characterization of (formerly RLY-1971), a SHP2 inhibitor currently in clinical trials in combination with KRAS G12C inhibitor divarasib (GDC-6036) for the treatment of solid tumors driven by a KRAS G12C mutation.
View Article and Find Full Text PDFMachine learning (ML) promises to tackle the grand challenges in chemistry and speed up the generation, improvement and/or ordering of research hypotheses. Despite the overarching applicability of ML workflows, one usually finds diverse evaluation study designs. The current heterogeneity in evaluation techniques and metrics leads to difficulty in (or the impossibility of) comparing and assessing the relevance of new algorithms.
View Article and Find Full Text PDFIn May 2022, JCAMD published a Special Issue in honor of Gerald (Gerry) Maggiora, whose scientific leadership over many decades advanced the fields of computational chemistry and chemoinformatics for drug discovery. Along the way, he has impacted many researchers in both academia and the pharmaceutical industry. In this Epilogue, we explain the origins of the Festschrift and present a series of first-hand vignettes, in approximate chronological sequence, that together paint a picture of this remarkable man.
View Article and Find Full Text PDFOne application area of computational methods in drug discovery is the automated design of small molecules. Despite the large number of publications describing methods and their application in both retrospective and prospective studies, there is a lack of agreement on terminology and key attributes to distinguish these various systems. We introduce Automated Chemical Design (ACD) Levels to clearly define the level of autonomy along the axes of ideation and decision making.
View Article and Find Full Text PDFWhile machine learning models have become a mainstay in Cheminformatics, the field has yet to agree on standards for model evaluation and comparison. In many cases, authors compare methods by performing multiple folds of cross-validation and reporting the mean value for an evaluation metric such as the area under the receiver operating characteristic. These comparisons of mean values often lack statistical rigor and can lead to inaccurate conclusions.
View Article and Find Full Text PDF: Artificial Intelligence (AI) has become a component of our everyday lives, with applications ranging from recommendations on what to buy to the analysis of radiology images. Many of the techniques originally developed for other fields such as language translation and computer vision are now being applied in drug discovery. AI has enabled multiple aspects of drug discovery including the analysis of high content screening data, and the design and synthesis of new molecules.
View Article and Find Full Text PDFRecent advances in computer hardware and software have led to a revolution in deep neural networks that has impacted fields ranging from language translation to computer vision. Deep learning has also impacted a number of areas in drug discovery, including the analysis of cellular images and the design of novel routes for the synthesis of organic molecules. While work in these areas has been impactful, a complete review of the applications of deep learning in drug discovery would be beyond the scope of a single Account.
View Article and Find Full Text PDFMany high-profile scientific journals have established policies mandating the release of code accompanying papers that describe computational methods. Unfortunately, the majority of journals that publish papers in Computational Chemistry and Cheminformatics have yet to define such guidelines. This Viewpoint reviews the current state of reproducibility for the field and makes a case for the inclusion of code with computational papers.
View Article and Find Full Text PDFThe Drug Design Data Resource (D3R) aims to identify best practice methods for computer aided drug design through blinded ligand pose prediction and affinity challenges. Herein, we report on the results of Grand Challenge 4 (GC4). GC4 focused on proteins beta secretase 1 and Cathepsin S, and was run in an analogous manner to prior challenges.
View Article and Find Full Text PDFArtificial intelligence (AI) tools are increasingly being applied in drug discovery. While some protagonists point to vast opportunities potentially offered by such tools, others remain sceptical, waiting for a clear impact to be shown in drug discovery projects. The reality is probably somewhere in-between these extremes, yet it is clear that AI is providing new challenges not only for the scientists involved but also for the biopharma industry and its established processes for discovering and developing new medicines.
View Article and Find Full Text PDFJ Comput Aided Mol Des
January 2019
The Drug Design Data Resource aims to test and advance the state of the art in protein-ligand modeling by holding community-wide blinded, prediction challenges. Here, we report on our third major round, Grand Challenge 3 (GC3). Held 2017-2018, GC3 centered on the protein Cathepsin S and the kinases VEGFR2, JAK2, p38-α, TIE2, and ABL1, and included both pose-prediction and affinity-ranking components.
View Article and Find Full Text PDFAdvances in computer processing speed and storage capacity have enabled researchers to generate virtual chemical libraries containing billions of molecules. While these numbers appear large, they are only a small fraction of the number of organic molecules that could potentially be synthesized. This review provides an overview of recent advances in the generation and use of virtual chemical libraries in medicinal chemistry.
View Article and Find Full Text PDF