Publications by authors named "Patrick W K Fong"

Article Synopsis
  • The commercialization of perovskite solar cells (PSCs) is hindered by their fragility and sensitivity to moisture.
  • A new asynchronous cross-linking strategy using divinyl sulfone (DVS) improves perovskite crystallization and creates a durable network through post-treatment with glycerinum.
  • This method boosts the efficiency of PSCs to over 25%, enhances their water resistance, reduces stress, and improves durability, marking a significant advancement in their performance and longevity.
View Article and Find Full Text PDF

Two highly crystalline 2D acceptors, ATIC-C11 and ATIC-BO, with acenaphthene-expanded quinoxaline central cores, have been demonstrated with very different characteristics in ternary organic solar cells (OSCs). The difference in side chains induces their distinctive molecular packing mode and unique crystal structure, in which ATIC-C11 displays a 3D structure with an elliptical framework, and ATIC-BO gives a rectangular framework. Their high crystallinity contributes to organized molecular packing in ternary devices, thus low energetic disorder and suppressed energy loss.

View Article and Find Full Text PDF

Leveraging breakthroughs in Y-series nonfullerene acceptors (NFAs), organic solar cells (OSCs) have achieved impressive power conversion efficiencies (PCEs) exceeding 19%. However, progress in advancing OSCs has decelerated due to constraints in realizing the full potential of the Y-series NFAs. Herein, a simple yet effective solid additive-induced preaggregation control method employing 2-chloro-5-iodopyridine (PDCI) is reported to unlock the full potential of the Y-series NFAs.

View Article and Find Full Text PDF

Excess ammonium halides as composition additives are widely employed in perovskite light-emitting diodes (PeLEDs), aiming to achieve high performance by controlling crystallinity and passivating defects. However, an in-depth understanding of whether excess organoammonium components affect the film physical/electrical properties and the resultant device instability is still lacking. Here, the trade-off between the performance and stability in high-efficiency formamidinium lead iodide (FAPbI)-based PeLEDs with excess ammonium halides is pointed, and the underlying mechanism is explored.

View Article and Find Full Text PDF

For organic solar cells to be competitive, the light-absorbing molecules should simultaneously satisfy multiple key requirements, including weak-absorption charge transfer state, high dielectric constant, suitable surface energy, proper crystallinity, etc. However, the systematic design rule in molecules to achieve the abovementioned goals is rarely studied. In this work, guided by theoretical calculation, we present a rational design of non-fullerene acceptor o-BTP-eC9, with distinct photoelectric properties compared to benchmark BTP-eC9.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) have been investigated recently in perovskite photovoltaics owing to their potential to boost optoelectronic performance and device stability. However, the impact of variations in the MOF side chain on perovskite characteristics and the mechanism of MOF/perovskite film formation remains unclear. In this study, three nanoscale thiol-functionalized UiO-66-type Zr-based MOFs (UiO-66-(SH) , UiO-66-MSA, and UiO-66-DMSA) are systematically employed and examined in perovskite solar cells (PSCs).

View Article and Find Full Text PDF

Non-fullerene acceptors based organic solar cells represent the frontier of the field, owing to both the materials and morphology manipulation innovations. Non-radiative recombination loss suppression and performance boosting are in the center of organic solar cell research. Here, we developed a non-monotonic intermediate state manipulation strategy for state-of-the-art organic solar cells by employing 1,3,5-trichlorobenzene as crystallization regulator, which optimizes the film crystallization process, regulates the self-organization of bulk-heterojunction in a non-monotonic manner, i.

View Article and Find Full Text PDF

Manipulating the perovskite solidification process, including nucleation and crystal growth, plays a critical role in controlling film morphology and thus affects the resultant device performance. In this work, a facile and effective ethyl alcohol (EtOH) cosolvent strategy is demonstrated with the incorporation of EtOH into perovskite ink for high-performance room-temperature blade-coated perovskite solar cells (PSCs) and modules. Systematic real-time perovskite crystallization studies uncover the delicate perovskite structural evolutions and phase-transition pathway.

View Article and Find Full Text PDF

The benchmark tin oxide (SnO) electron transporting layers (ETLs) have enabled remarkable progress in planar perovskite solar cell (PSCs). However, the energy loss is still a challenge due to the lack of "hidden interface" control. We report a novel ligand-tailored ultrafine SnO quantum dots (QDs) via a facile rapid room temperature synthesis.

View Article and Find Full Text PDF

Graded bulk-heterojunction (G-BHJ) with well-defined vertical phase separation has potential to surpass classical BHJ in organic solar cells (OSCs). In this work, an effective G-BHJ strategy via nonhalogenated solvent sequential deposition is demonstrated using nonfullerene acceptor (NFA) OSCs. Spin-coated G-BHJ OSCs deliver an outstanding 17.

View Article and Find Full Text PDF

Epitaxial growth gives the highest-quality crystalline semiconductor thin films for optoelectronic devices. Here, a universal solution-processed bottom-up quasi-epitaxial growth of highly oriented α-formamidinium lead triiodide (α-FAPbI ) perovskite film via a two-step method is reported, in which the crystal orientation of α-FAPbI film is precisely controlled through the synergetic effect of methylammonium chloride and the large-organic cation butylammonium bromide. In situ GIWAXS visualizes the BA-related intermediate phase formation at the bottom of film, which serves as a guiding template for the bottom-up quasi-epitaxial growth in the subsequent annealing process.

View Article and Find Full Text PDF

The combination of a bulk 3D perovskite layer and a reduced dimensional perovskite layer (perovskite quantum wells (PQWs)) is demonstrated to enhance the performance of perovskite solar cells (PSCs) significantly in terms of stability and efficiency. This perovskite hierarchy has attracted intensive research interest; however, the in-depth formation mechanism of perovskite quantum wells on top of a 3D perovskite layer is not clearly understood and is therefore the focus of this study. Along with ex situ morphology and photophysical characterization, the time-resolved grazing-incidence wide-angle X-ray scattering (TS-GIWAXS) technique performed in this study provides real-time insights on the phase-transition during the organic cation (HTAB ligand molecule) coating and PQWs/3D architecture formation process.

View Article and Find Full Text PDF

The near-infrared (NIR) absorbing fused-ring electron acceptor, COi8DFIC, has demonstrated very good photovoltaic performance when combined with PTB7-Th as a donor in binary organic solar cells (OSCs). In this work, the NIR acceptor was added to state-of-the-art PBDBT-2F:IT4F-based solar cells as a third component, leading to (i) an efficiency increase of the ternary devices compared to the binary solar cells in the presence of the highly crystalline COi8DFIC acceptor and (ii) much-improved photostability under 1-sun illumination. The electron transport properties were investigated and revealed the origin of the enhanced device performance.

View Article and Find Full Text PDF

A cryogenic process is introduced to control the crystallization of perovskite layers, eliminating the need for the use of environmentally harmful antisolvents. This process enables decoupling of the nucleation and the crystallization phases by inhibiting chemical reactions in as-cast precursor films rapidly cooled down by immersion in liquid nitrogen. The cooling is followed by blow-drying with nitrogen gas, which induces uniform precipitation of precursors due to the supersaturation of precursors in the residual solvents at very low temperature, while at the same time enhancing the evaporation of the residual solvents and preventing the ordered precursors/perovskite from redissolving into the residual solvents.

View Article and Find Full Text PDF

High quality wafer-scale free-standing WS grown by van der Waals rheotaxy (vdWR) using Ni as a texture promoting layer is reported. The microstructure of vdWR grown WS was significantly modified from mixture of crystallites with their c-axes both parallel to (type I) and perpendicular to (type II) the substrate to large type II crystallites. Wafer-scale transfer of vdWR grown WS onto different substrates by an etching-free technique was demonstrated for the first time that utilized the hydrophobic property of WS and hydrophilic property of sapphire.

View Article and Find Full Text PDF