During the evolution of land plants many body plans have been developed. Differences in the cross-sectional geometry and tissue pattern of plant axes influence their flexural rigidity, torsional rigidity and the ratio of both of these rigidities, the so-called twist-to-bend ratio. For comparison, we have designed artificial cross-sections with various cross-sectional geometries and patterns of vascular bundles, collenchyma or sclerenchyma strands, but fixed percentages for these tissues.
View Article and Find Full Text PDFDuring biological evolution, plants have developed a wide variety of body plans and concepts that enable them to adapt to changing environmental conditions. The trade-off between flexural and torsional rigidity is an important example of sometimes conflicting mechanical requirements, the adaptation to which can be quantified by the dimensionless twist-to-bend ratio. Our study considers the triangular flower stalk of Carex pendula, which shows the highest twist-to-bend ratios ever measured for herbaceous plant axes.
View Article and Find Full Text PDFProc Math Phys Eng Sci
September 2014
We consider the variational formulation of both geometrically linear and geometrically nonlinear elasto-plasticity subject to a class of hard single-slip conditions. Such side conditions typically render the associated boundary-value problems non-convex. We show that, for a large class of non-smooth plastic distortions, a given single-slip condition (specification of Burgers vectors) can be relaxed by introducing a microstructure through a two-stage process of mollification and lamination.
View Article and Find Full Text PDF