Publications by authors named "Patrick Vernet"

Mitochondrial single-stranded DNA-binding protein (mtSSB) is essential for mitochondrial DNA (mtDNA) replication. Recently, several mtSSB variants have been associated with autosomal dominant mitochondrial optic atrophy and retinal dystrophy. Here, we have studied at the molecular level the functional consequences of one of the most severe mtSSB variants, R107Q.

View Article and Find Full Text PDF
Article Synopsis
  • * The study focuses on two specific NUDIX proteins, NUDT6 and NUDT9, both found to localize to mitochondria and are confirmed to be expressed in human cells.
  • * NUDT6- and NUDT9-deficiencies lead to increased mitochondrial respiratory chain activity and changes in the expression of respiratory chain complexes; they also exhibit distinct substrate specificities, with N
View Article and Find Full Text PDF
Article Synopsis
  • * In this study, researchers used a human cell system to examine the effects of DSBs in mtDNA, finding no evidence of repair mechanisms; instead, they noted a loss of damaged mtDNA and reduced overall mtDNA levels.
  • * The findings suggest that there is an unidentified process in mitochondria responsible for removing damaged mtDNA without the known mechanisms of autophagy or mitophagy, indicating a unique way cells manage DSBs.
View Article and Find Full Text PDF
Article Synopsis
  • Poly-ADP ribosylation (PARylation) is a post-translational modification linked to DNA repair, with PARP-I being the main active form in Drosophila.
  • The study chemically induced strand-breaks in Drosophila S2 cells, observing minimal changes in PARylation during the damage and a slight increase in PARP mRNAs during recovery, which contrasts with human cells where PARylation is more active.
  • While PARP is crucial for maintaining DNA integrity in Drosophila, the findings suggest it is not essential for the actual repair of strand-breaks, indicating a tightly regulated PARylation process.
View Article and Find Full Text PDF

DNA repair mechanisms are key components for the maintenance of the essential mitochondrial genome. Among them, base excision repair (BER) processes, dedicated in part to oxidative DNA damage, are individually well known in mitochondria. However, no large view of these systems in differential physiological conditions is available yet.

View Article and Find Full Text PDF

We report here that spermatozoa of mice lacking both the sperm nucleus glutathione peroxidase 4 (snGPx4) and the epididymal glutathione peroxidase 5 (GPx5) activities display sperm nucleus structural abnormalities including delayed and defective nuclear compaction, nuclear instability and DNA damage. We show that to counteract the GPx activity losses, the epididymis of the double KO animals mounted an antioxydant response resulting in a strong increase in the global H(2)O(2)-scavenger activity especially in the cauda epididymis. Quantitative RT-PCR data show that together with the up-regulation of epididymal scavengers (of the thioredoxin/peroxiredoxin system as well as glutathione-S-transferases) the epididymis of double mutant animals increased the expression of several disulfide isomerases in an attempt to recover normal disulfide-bridging activity.

View Article and Find Full Text PDF

The mammalian glutathione peroxidase (GPx) gene family encodes bifunctional enzymes that can work either as classical reactive oxygen species (ROS) scavengers or as thiol peroxidases, thereby introducing disulfide bridges in thiol-containing proteins. These dual effects are nowhere better demonstrated than in epididymal maturing spermatozoa, where the concomitant actions of several GPx ensure the achievement of the structural maturation of sperm cells as well as their protection against ROS-induced damage. We review here the roles played by the sperm-associated forms of GPx4 (mitochondrial GPx4 and nuclear GPx4), the secreted GPx5 protein, and the epithelial proteins GPx1, GPx3, and cellular GPx4, all functioning in the mammalian epididymis at different stages of the sperm's epididymal journey, and in different epididymis compartments.

View Article and Find Full Text PDF

The mammalian epididymis provides sperm with an environment that promotes their maturation and protects them from external stresses. For example, it harbors an array of antioxidants, including non-conventional glutathione peroxidase 5 (GPX5), to protect them from oxidative stress. To explore the role of GPX5 in the epididymis, we generated mice that lack epididymal expression of the enzyme.

View Article and Find Full Text PDF

Mammalian spermatozoa undergo important plasma membrane maturation steps during epididymal transit. Among these, changes in lipids and cholesterol are of particular interest as they are necessary for fertilization. However, molecular mechanisms regulating these transformations inside the epididymis are still poorly understood.

View Article and Find Full Text PDF

Using various molecular approaches, including reverse transcription-polymerase chain reaction (RT-PCR), rapid amplification of cDNA ends-PCR, sequencing, northern and western blotting, we found that the mouse GPX5 gene gives rise to at least three different transcripts that are not expressed at the same levels in the mouse epididymis. In addition to the major GPX5 transcript, we show that minor GPX5 transcripts exist, arising either from precocious termination of transcription or an alternative splicing event within intron 4 of the 5 exon-encoding GPX5 single copy gene. Furthermore, we demonstrate that variants of the GPX5 protein that are correlated with the shorter GPX5 transcripts can be detected in caput epididymidis protein extracts and that the various GPX5 isoforms are subject to differential post-transcriptional maturation processes in the mouse epididymis that essentially involve the addition of O-glycosyl extensions.

View Article and Find Full Text PDF

Aim: To investigate the roles of liver X receptors (LXR) in the lipid composition and gene expression regulation in the murine caput epididymidis. LXR are nuclear receptors for oxysterols, molecules derived from cholesterol metabolism that are present in mammals as two isoforms: LXRalpha, which is more specifically expressed in lipid-metabolising tissues, such as liver, adipose and steroidogenic tissues, and macrophages, whereas LXRbeta is ubiquitous. Their importance in reproductive physiology has been sustained by the fact that male mice in which the function of both LXR has been disrupted have fertility disturbances starting at the age of 5 months, leading to complete sterility by the age of 9 months.

View Article and Find Full Text PDF

We have isolated vesicular structures from mouse epididymal fluid, referred to as epididymosomes. Epididymosomes have a roughly spherical aspect and a bilayer membrane, and they are heterogeneous in size and content. They originate from the epididymal epithelium, notably from the caput region, and are emitted in the epididymal lumen by way of apocrine secretion.

View Article and Find Full Text PDF

We report here on the cloning of cDNAs coding bovine and equine orthologs of mouse epididymis-restricted and sperm-bound glutathione peroxidase 5 (GPX5), a selenium-independent member of the multigenic GPX family in mammals. The complete sequence of bovine GPX5 as well as a partial sequence of the equine GPX5 were characterized, conceptually translated and aligned with other known mammalian GPX5 proteins. Using Northern blotting assays, we show that the level of expression of GPX5 is high in bovine but low in equine and that in both species the regionalization of GPX5 expression in epididymis is not totally identical to what was reported for rodent mouse GPX5.

View Article and Find Full Text PDF

It is well documented that a dietary deficiency in magnesium can induce oxidative stress and an inflammatory response in animal models. In our study, we have investigated these responses in the mouse epididymis after mice had been fed a magnesium-deficient diet for a 2-week duration. The extracellular and intracellular concentrations of magnesium where shown to be depleted on this diet.

View Article and Find Full Text PDF

In addition to the scientific issues associated with male contraception, there are a variety of other concerns that must be addressed before new male contraceptives reach the market. Cultural attitudes toward contraception will play a role both in the acceptability of any contraceptive and in compliance and usage. Delivery methods must also be considered; different methods are favored depending on the social context.

View Article and Find Full Text PDF

Transgenic male mice bearing inactive mutations of the receptor tyrosine kinase c-ros lack the initial segment of the epididymis and are infertile. Several techniques were applied to determine differences in gene expression in the epididymal caput of heterozygous fertile (HET) and infertile homozygous knockout (KO) males that may explain the infertility. Complementary DNA arrays, gene chips, Northern and Western blots, and immunohistochemistry indicated that some proteins were downregulated, including the initial segment/proximal caput-specific genes c-ros, cystatin-related epididymal-spermatogenic (CRES), and lipocalin mouse epididymal protein 17 (MEP17), whereas other caput-enriched genes (glutathione peroxidase 5, a disintegrin and metalloproteinase [ADAM7], bone morphogenetic proteins 7 and 8a, A-raf, CCAAT/enhancer binding protein beta, PEA3) were unchanged.

View Article and Find Full Text PDF

In mice, GPX5 is a secreted protein abundantly synthesized by the caput epididymidis. The protein is secreted as early as the initial segment of the caput and is found subsequently associated with the sperm plasma membrane in a sub-acrosomic localization. We show here that GPX5 is present in the caput and cauda epididymides lumens in three different locations: either free as a soluble protein in the caput epididymal fluid, weakly bound to caput sperm membranes, or, finally, associated to lipid-containing structures conferring to the protein a protective effect against proteolytic digestions.

View Article and Find Full Text PDF