Publications by authors named "Patrick Veres"

Article Synopsis
  • The decline in vehicle emissions highlights the increasing role of Volatile Organic Compounds (VOCs) from Volatile Chemical Products (VCP), but their complex chemistry poses challenges for accurate modeling.
  • Researchers developed a new chemical mechanism called RACM2B-VCP to better represent VOC emissions from VCP sources, specifically in urban settings like Los Angeles.
  • Model evaluations show promising results, indicating that over 50% of anthropogenic VOC reactivity and ozone enhancement in the area is linked to VCP emissions, despite some remaining discrepancies in the model's overall VOC reactivity predictions.
View Article and Find Full Text PDF

The intramolecular hydrogen-shift rate coefficient of the CHSCHO (methylthiomethylperoxy, MSP) radical, a product formed in the oxidation of dimethyl sulfide (DMS), was measured using a pulsed laser photolysis flow tube reactor coupled to a high-resolution time-of-flight chemical ionization mass spectrometer that measured the formation of the DMS degradation end product HOOCHSCHO (hydroperoxymethyl thioformate). Measurements performed over the temperature range of 314-433 K yielded a hydrogen-shift rate coefficient of () = (2.39 ± 0.

View Article and Find Full Text PDF
Article Synopsis
  • The study reveals high levels of hydrochloric acid (HCl) and halogens (Cl, Br, and BrCl) in an industrial plume near the Great Salt Lake, Utah, highlighting a significant environmental concern.
  • Complete oxygen depletion was linked to the production of halogen radicals, correlating with reported emissions from nearby facilities for chlorine and HCl, but bromine levels were estimated based on unreported inventory data.
  • A photochemical model demonstrated that bromine radicals were the primary cause of rapid oxygen depletion, and including halogen emissions in environmental models indicated a 10%-25% increase in particulate matter in the Great Salt Lake Basin, exacerbating air quality problems in the region.
View Article and Find Full Text PDF

Gas phase hydrogen chloride (HCl) was measured at Pasadena and San Joaquin Valley (SJV) ground sites in California during May and June 2010 as part of the CalNex study. Observed mixing ratios were on average 0.83 ppbv at Pasadena, ranging from below detection limit (0.

View Article and Find Full Text PDF

Carbonaceous emissions from wildfires are a dynamic mixture of gases and particles that have important impacts on air quality and climate. Emissions that feed atmospheric models are estimated using burned area and fire radiative power (FRP) methods that rely on satellite products. These approaches show wide variability and have large uncertainties, and their accuracy is challenging to evaluate due to limited aircraft and ground measurements.

View Article and Find Full Text PDF

Wildfires are a substantial but poorly quantified source of tropospheric ozone (O). Here, to investigate the highly variable O chemistry in wildfire plumes, we exploit the in situ chemical characterization of western wildfires during the FIREX-AQ flight campaign and show that O production can be predicted as a function of experimentally constrained OH exposure, volatile organic compound (VOC) reactivity, and the fate of peroxy radicals. The O chemistry exhibits rapid transition in chemical regimes.

View Article and Find Full Text PDF

We present a novel method, the Gaussian observational model for edge to center heterogeneity (GOMECH), to quantify the horizontal chemical structure of plumes. GOMECH fits observations of short-lived emissions or products against a long-lived tracer (e.g.

View Article and Find Full Text PDF

Oceans emit large quantities of dimethyl sulfide (DMS) to the marine atmosphere. The oxidation of DMS leads to the formation and growth of cloud condensation nuclei (CCN) with consequent effects on Earth's radiation balance and climate. The quantitative assessment of the impact of DMS emissions on CCN concentrations necessitates a detailed description of the oxidation of DMS in the presence of existing aerosol particles and clouds.

View Article and Find Full Text PDF

Formic acid (HCOOH) is an important component of atmospheric acidity but its budget is poorly understood, with prior observations implying substantial missing sources. Here we combine pole-to-pole airborne observations from the Atmospheric Tomography Mission (ATom) with chemical transport model (GEOS-Chem CTM) and back trajectory analyses to provide the first global in-situ characterization of HCOOH in the remote atmosphere. ATom reveals sub-100 ppt HCOOH concentrations over most of the remote oceans, punctuated by large enhancements associated with continental outflow.

View Article and Find Full Text PDF

Dimethyl sulfide (DMS), emitted from the oceans, is the most abundant biological source of sulfur to the marine atmosphere. Atmospheric DMS is oxidized to condensable products that form secondary aerosols that affect Earth's radiative balance by scattering solar radiation and serving as cloud condensation nuclei. We report the atmospheric discovery of a previously unquantified DMS oxidation product, hydroperoxymethyl thioformate (HPMTF, HOOCHSCHO), identified through global-scale airborne observations that demonstrate it to be a major reservoir of marine sulfur.

View Article and Find Full Text PDF

We apply a high-resolution chemical transport model (GEOS-Chem CTM) with updated treatment of volatile organic compounds (VOCs) and a comprehensive suite of airborne datasets over North America to (i) characterize the VOC budget and (ii) test the ability of current models to capture the distribution and reactivity of atmospheric VOCs over this region. Biogenic emissions dominate the North American VOC budget in the model, accounting for 70 % and 95 % of annually emitted VOC carbon and reactivity, respectively. Based on current inventories anthropogenic emissions have declined to the point where biogenic emissions are the dominant summertime source of VOC reactivity even in most major North American cities.

View Article and Find Full Text PDF

Biomass burning (BB) is a large source of reactive compounds in the atmosphere. While the daytime photochemistry of BB emissions has been studied in some detail, there has been little focus on nighttime reactions despite the potential for substantial oxidative and heterogeneous chemistry. Here, we present the first analysis of nighttime aircraft intercepts of agricultural BB plumes using observations from the NOAA WP-3D aircraft during the 2013 Southeast Nexus (SENEX) campaign.

View Article and Find Full Text PDF

Decamethylcyclopentasiloxane (D) is a cyclic volatile methyl siloxane (cVMS) that is widely used in consumer products and commonly observed in urban air. This study quantifies the ambient mixing ratios of D from ground sites in two North American cities (Boulder, CO, USA, and Toronto, ON, CA). From these data, we estimate the diurnal emission profile of D in Boulder, CO.

View Article and Find Full Text PDF

We present airborne observations of gaseous reactive halogen species (HCl, Cl, ClNO, Br,BrNO, and BrCl), sulfur dioxide (SO), and nonrefractory fine particulate chloride (pCl) and sulfate(pSO) in power plant exhaust. Measurements were conducted during the Wintertime INvestigation of Transport, Emissions, and Reactivity campaign in February-March of 2015 aboard the NCAR-NSF C-130 aircraft. Fifty air mass encounters were identified in which SO levels were elevated ~5 ppb above ambient background levels and in proximity to operational power plants.

View Article and Find Full Text PDF

Recent observations suggest a large and unknown daytime source of nitrous acid (HONO) to the atmosphere. Multiple mechanisms have been proposed, many of which involve chemistry that reduces nitrogen dioxide (NO2) on some time scale. To examine the NO2 dependence of the daytime HONO source, we compare weekday and weekend measurements of NO2 and HONO in two U.

View Article and Find Full Text PDF

The United States is now experiencing the most rapid expansion in oil and gas production in four decades, owing in large part to implementation of new extraction technologies such as horizontal drilling combined with hydraulic fracturing. The environmental impacts of this development, from its effect on water quality to the influence of increased methane leakage on climate, have been a matter of intense debate. Air quality impacts are associated with emissions of nitrogen oxides (NOx = NO + NO2) and volatile organic compounds (VOCs), whose photochemistry leads to production of ozone, a secondary pollutant with negative health effects.

View Article and Find Full Text PDF

We present a sensitive, compact detector that measures total reactive nitrogen (NOy), as well as NO2, NO, and O3. In all channels, NO2 is directly detected by laser diode based cavity ring-down spectroscopy (CRDS) at 405 nm. Ambient O3 is converted to NO2 in excess NO for the O3 measurement channel.

View Article and Find Full Text PDF

Photolabile nighttime radical reservoirs, such as nitrous acid (HONO) and nitryl chloride (ClNO(2)), contribute to the oxidizing potential of the atmosphere, particularly in early morning. We present the first vertically resolved measurements of ClNO(2), together with vertically resolved measurements of HONO. These measurements were acquired during the California Nexus (CalNex) campaign in the Los Angeles basin in spring 2010.

View Article and Find Full Text PDF

We measured isocyanic acid (HNCO) in laboratory biomass fires at levels up to 600 parts per billion by volume (ppbv), demonstrating that it has a significant source from pyrolysis/combustion of biomass. We also measured HNCO at mixing ratios up to 200 pptv (parts-per-trillion by volume) in ambient air in urban Los Angeles, CA, and in Boulder, CO, during the recent 2010 Fourmile Canyon fire. Further, our measurements of aqueous solubility show that HNCO is highly soluble, as it dissociates at physiological pH.

View Article and Find Full Text PDF

Coupled surface-atmosphere models are being used with increased frequency to make predictions of tropospheric chemistry on a 'future' earth characterized by a warmer climate and elevated atmospheric CO2 concentration. One of the key inputs to these models is the emission of isoprene from forest ecosystems. Most models in current use rely on a scheme by which global change is coupled to changes in terrestrial net primary productivity (NPP) which, in turn, is coupled to changes in the magnitude of isoprene emissions.

View Article and Find Full Text PDF