Publications by authors named "Patrick Tripp"

Article Synopsis
  • A 66-year-old male with hypertension experienced elevated intraocular pressure (IOP) and visual symptoms after consuming a water bolus before radiation treatment for prostate cancer.
  • The patient exhibited increased IOP in both eyes, particularly notable in the left eye, and responded positively to IOP-lowering medications.
  • The findings suggest that drinking large amounts of water can raise IOP, potentially putting individuals at risk for glaucoma, and that the water-drinking test can help assess this risk in patients with normal IOP levels.
View Article and Find Full Text PDF

Pili are filamentous surface extensions that play roles in bacterial and archaeal cellular processes such as adhesion, biofilm formation, motility, cell-cell communication, DNA uptake and horizontal gene transfer. The model archaeaon Sulfolobus acidocaldarius assembles three filaments of the type-IV pilus superfamily (archaella, archaeal adhesion pili and UV-inducible pili), as well as a so-far uncharacterised fourth filament, named "thread". Here, we report on the cryo-EM structure of the archaeal thread.

View Article and Find Full Text PDF

Echoing the repeated convergent evolution of flight and vision in large eukaryotes, propulsive swimming motility has evolved independently in microbes in each of the three domains of life. Filamentous appendages - archaella in Archaea, flagella in Bacteria and cilia in Eukaryotes - wave, whip or rotate to propel microbes, overcoming diffusion and enabling colonization of new environments. The implementations of the three propulsive nanomachines are distinct, however: archaella and flagella rotate, while cilia beat or wave; flagella and cilia assemble at their tips, while archaella assemble at their base; archaella and cilia use ATP for motility, while flagella use ion-motive force.

View Article and Find Full Text PDF

Motility structures are vital in all three domains of life. In Archaea, motility is mediated by the archaellum, a rotating type IV pilus-like structure that is a unique nanomachine for swimming motility in nature. Whereas periplasmic FlaF binds the surface layer (S-layer), the structure, assembly and roles of other periplasmic components remain enigmatic, limiting our knowledge of the archaellum's functional interactions.

View Article and Find Full Text PDF

The archaellum assembly machinery and its filament consist of seven proteins in the crenarchaeon Sulfolobus acidocaldarius. We have so far expressed, purified, and biochemically characterized four of these archaellum subunits, namely, FlaX, FlaH, FlaI, and FlaF. FlaX, FlaH, and FlaI tightly interact and form the archaellum motor complex important for archaellum assembly and rotation.

View Article and Find Full Text PDF

Purpose: Bone scans (BS) are a low-value test for asymptomatic men with low-risk prostate cancer. We performed a quality improvement intervention aimed at reducing BS for these patients.

Methods And Materials: The intervention was a presentation that leveraged the behavioral science concepts of social comparison and normative appeals.

View Article and Find Full Text PDF

Archaea employ the archaellum, a type IV pilus-like nanomachine, for swimming motility. In the crenarchaeon Sulfolobus acidocaldarius, the archaellum consists of seven proteins: FlaB/X/G/F/H/I/J. FlaF is conserved and essential for archaellum assembly but no FlaF structures exist.

View Article and Find Full Text PDF

Archaella are the archaeal motility structure that is the functional pendant of the bacterial flagellum but is assembled by a mechanism similar to that for type IV pili. Recently, it was shown by Banerjee et al. that FlaX, a crenarchaeal archaellum subunit from Sulfolobus acidocaldarius, forms a ring-like oligomer, and it was proposed that this ring may act as a static platform for torque generation in archaellum rotation [Banerjee A et al.

View Article and Find Full Text PDF

Purpose: Intensity-modulated radiation therapy (IMRT) is the standard of care for head-and-neck cancer (HNC). We treated patients with HNC by delivering either a moderate hypofractionation (MHF) schedule (66 Gy at 2.2 Gy per fraction to the gross tumor [primary and nodal]) with standard dose fractionation (54-60 Gy at 1.

View Article and Find Full Text PDF

Synapses associated with the parallel fiber (pf) axons of cerebellar granule cells constitute the largest excitatory input onto Purkinje cells (PCs). Although most theories of cerebellar function assume these synapses produce an excitatory sequential "beamlike" activation of PCs, numerous physiological studies have failed to find such beams. Using a computer model of the cerebellar cortex we predicted that the lack of PCs beams is explained by the concomitant pf activation of feedforward molecular layer inhibition.

View Article and Find Full Text PDF