Publications by authors named "Patrick Tamukong"

Background: Black men are at a higher risk of prostate cancer (PC) diagnosis and present with more high-grade PC than White men in an equal access setting. This study aimed to identify differential transcriptional regulation between Black and White men with PC.

Methods: We performed microarray of radical prostatectomy tissue blocks from 305 Black and 238 White men treated at the Durham Veterans Affairs Medical Center.

View Article and Find Full Text PDF

Background: Previously, we found low-carbohydrate diets slowed prostate cancer (PC) growth and increased survival vs. a Western diet in mice, by inhibiting the insulin/IGF-1 axis. Thus, we tested whether modifying carbohydrate quality to lower glycemic index (GI) without changing quantity results in similar benefits as with reduced quantity.

View Article and Find Full Text PDF

CD4 + regulatory T cells (Tregs) play a central role in regulating and suppressing anti-tumor immune responses. FoxP3 is a transcription factor and master regulator of the Treg lineage. We developed and characterized a proteolysis targeting chimeric (PROTAC) drug that targets FoxP3 (PF).

View Article and Find Full Text PDF

Antitumor immunity requires lymphocytes to localize to the tumor. Prostate cancers (PCs) are immunologically cold and tend to lack T-cell infiltration. Most advanced PCs are insensitive to PD1 blockade therapies.

View Article and Find Full Text PDF

Purpose: Hypoxia inducible factor (HIF) pathway alterations drive progression of clear cell renal cell carcinoma (ccRCC). We aim to evaluate genes within the canonical and non-canonical HIF pathways as predictors of survival in metastatic ccRCC.

Materials And Methods: Gene expression was determined from 324 archival pretreatment nephrectomy specimens from CALGB90206, a phase III trial of patients treated with interferon alpha (INF-α) vs.

View Article and Find Full Text PDF

The generalized Van Vleck second order multireference perturbation theory (GVVPT2) method was used to investigate the low-lying electronic states of Ni. Because the nickel atom has an excitation energy of only 0.025 eV to its first excited state (the least in the first row of transition elements), Ni has a particularly large number of low-lying states.

View Article and Find Full Text PDF

We study the impact of the chemical composition on phonon-mediated exciton relaxation in the core/shell quantum dots (QDs), with 1 nm core made of PbX and the monolayer shell made of CdX, where X = S and Se. For this, time-domain nonadiabatic molecular dynamics (NAMD) based on density functional theory (DFT) and surface hopping techniques are applied. Simulations reveal twice faster energy relaxation in PbS/CdS than PbSe/CdSe because of dominant couplings to higher-energy optical phonons in structures with sulfur anions.

View Article and Find Full Text PDF

Our recent density functional theory (DFT)-in-DFT embedding protocol, which enforces intersubsystem (or external orbital) orthogonality, is used for the first time to investigate covalent bond dissociation and is shown to do so accurately. Full potential energy curves for the dissociation of a H-O bond in HO and the C-C bond in HC-CH have been constructed using the new embedding method, as have the challenging ionic bonds in LiH and LiF, and were found to match the reference Kohn-Sham (KS)-DFT curves to at least one part in 10. The added constraint of external orbital orthogonality allows for the formulation of an embedding protocol that does not rely on approximate kinetic energy functionals for the evaluation of the so-called nonadditive kinetic potential, does not introduce compensatory potentials, and does not require a total system calculation at any stage.

View Article and Find Full Text PDF

Colloidal quantum dots (QDs) are near-ideal nanomaterials for energy conversion and lighting technologies. However, their photophysics exhibits supreme sensitivity to surface passivation and defects, of which control is problematic. The role of passivating ligands in photodynamics remains questionable and is a focus of ongoing research.

View Article and Find Full Text PDF

Using density functional theory (DFT) and time-dependent DFT (TDDFT), we investigate the effects of carboxylate groups on the electronic and optical properties of CdSe quantum dots (QDs). We specifically focus on the mechanisms of the binding of the acetate anion to the QD surface with and without excess of Cd(2+) cations. Our calculations show that the most stable ligated conformations are those where an acetate is attached to extra Cd(2+) ion forming a [Cd(2+)(CH3COO(-))] at the QD's surface, while also accompanied by an acetate attached nearby at the surface balancing the overall neutral charge of the system.

View Article and Find Full Text PDF

First results on electron densities and energies for a number of molecular complexes with different interaction strengths (ranging from ca. 0.3 to 40 kcal/mol), obtained using our recently introduced DFT-in-DFT embedding equations (i.

View Article and Find Full Text PDF

The multireference generalized Van Vleck second-order perturbation theory (GVVPT2) method is used to describe full potential energy curves (PECs) of low-lying states of second-row transition metal dimers Y(2) and Tc(2), with scalar relativity included via the spin-free exact two-component (sf-X2C) Hamiltonian. Chemically motivated incomplete model spaces, of the style previously shown to describe complicated first-row transition metal diatoms well, were used and again shown to be effective. The studied states include the previously uncharacterized 2(1)Σ(g)(+) and 3(1)Σ(g)(+) PECs of Y(2).

View Article and Find Full Text PDF

With relatively simple model spaces derived from valence bond models, a straightforward zero-order Hamiltonian, and the use of moderate-sized Dunning-type correlation consistent basis sets (cc-pVTZ, aug-cc-pVTZ, and cc-pVQZ), the second order generalized Van Vleck perturbation theory (GVVPT2) method is shown to produce potential energy curves (PECs) and spectroscopic constants close to experimental results for both ground and low-lying excited electronic states of Sc(2), Cr(2) and Mn(2). In spite of multiple quasidegeneracies (particularly for the cases of Sc(2) and Mn(2)), the GVVPT2 PECs are smooth with no discontinuities. Since these molecules have been identified as ones that widely used perturbative methods are inadequate for describing well, due to intruder state problems, unless shift parameters are introduced that can obfuscate the physics, this study suggests that the conclusion about the inadequacy of multireference perturbation theory be re-evaluated.

View Article and Find Full Text PDF