This study investigated the optimization of setpoint conditions used for the enhanced biofabrication of silver nanoparticles (H.C-AgNPs) using extracts. A Box-Behnken Design (BBD) model was used to evaluate the effects of reaction time, temperature, an extraction volume, and a 0.
View Article and Find Full Text PDFThe rapidly increasing population and climate change pose a great threat to our current food systems. Moreover, the high usage of animal-based and plant-based protein has its drawbacks, as these nutritional sources require many hectares of land and water, are affected by seasonal variations, are costly, and contribute to environmental pollution. Single-cell proteins (SCPs) are gaining a lot of research interest due to their remarkable properties, such as their high protein content that is comparable with other protein sources; low requirements for land and water; low carbon footprint; and short production period.
View Article and Find Full Text PDFAmongst the biofuels described in the literature, biohydrogen has gained heightened attention over the past decade due to its remarkable properties. Biohydrogen is a renewable form of H that can be produced under ambient conditions and at a low cost from biomass residues. Innovative approaches are continuously being applied to overcome the low process yields and pave the way for its scalability.
View Article and Find Full Text PDFThe possibility of breaking down cellulose-rich food waste through biofilm engineering was investigated. Six previously isolated strains from naturally degrading fruits and vegetables, screened for biofilm-forming ability and cellulolytic activity, were selected to enrich a biocarrier seeding microbial consortium. The food waste model used in this study was cabbage which was aerobically digested under repeated water rinsing and regular effluent drainage.
View Article and Find Full Text PDFIn this study, a phylogenic analysis was performed on pathogens previously identified in Hong Kong wet markets' cutting boards. Phylogenetic comparisons were made between phylotypes obtained in this study and environmental and clinical phylotypes for establishing the possible origin of selected bacterial species isolated from wet market cutting board ecosystems. The results reveal a strong relationship between wet market bacterial assemblages and environmental and clinically relevant phylotypes.
View Article and Find Full Text PDFMicrobial lipids, also known as single-cell oils (SCOs), are highly attractive feedstocks for biodiesel production due to their fast production rates, minimal labor requirements, independence from seasonal and climatic changes, and ease of scale-up for industrial processing. Among the SCO producers, the less explored filamentous fungi (molds) exhibit desirable features such as a repertoire of hydrolyzing enzymes and a unique pellet morphology that facilitates downstream harvesting. Although several oleaginous filamentous fungi have been identified and explored for SCO production, high production costs and technical difficulties still make the process less attractive compared to conventional lipid sources for biodiesel production.
View Article and Find Full Text PDFAccessing food through wet markets is a common global daily occurrence, where fresh meat can be purchased to support an urbanizing world population. Similar to the wet markets in many other metropolitan cities in Asia, Hong Kong wet markets vary and are characterized by differing hygiene routines and access to essential modern technologies. The lack of risk assessments of food contact surfaces in these markets has led to substantial gaps in food safety knowledge and information that could help improve and maintain public health.
View Article and Find Full Text PDFBioconversion of renewable H and waste CO using methanogenic archaea is a promising technology for obtaining high-purity CH, which can serve as an alternative for natural gas. This process is known as ex situ biogas upgrading. This work highlights the pathway toward the bioconversion of renewable H and CO into high-purity biomethane by exploiting highly accessible agro-municipal residues: cow manure (CM) and the organic fraction of solid municipal waste (OFSMW), which used to be called "waste materials".
View Article and Find Full Text PDFHong Kong's wet markets play a crucial role in the country's supply of safe, fresh meat to satisfy the dietary needs of its population. Whilst food safety regulations have been introduced over the past few years to maintain the microbial safety of foods sold from these wet markets, it remains unclear whether the hygiene maintenance that is performed on the wooden cutting boards used for meat-processing is effective. In fact, hygiene maintenance may often be overlooked, and hygiene standards may be insufficient.
View Article and Find Full Text PDFThe steady increase in population, coupled with the rapid utilization of resources and continuous development of industry and agriculture has led to excess amounts of wastewater with changes in its composition, texture, complexity and toxicity due to the diverse range of pollutants being present in wastewater. The challenges faced by wastewater treatment today are mainly with the complexity of the wastewater as it complicates treatment processes by requiring a combination of technologies, thus resulting in longer treatment times and higher operational costs. Nanotechnology opens up a novel platform that is free from secondary pollution, inexpensive and an effective way to simultaneously remove multiple pollutants from wastewater.
View Article and Find Full Text PDFThe high dependence on fossil fuels has escalated the challenges of greenhouse gas emissions and energy security. Biohydrogen is projected as a future alternative energy as a result of its non-polluting characteristics, high energy content (122 kJ/g), and economic feasibility. However, its industrial production has been hampered by several constraints such as low process yields and the formation of biohydrogen-competing reactions.
View Article and Find Full Text PDF