Publications by authors named "Patrick Shen"

Enzyme immobilization offers a number of advantages that improve biocatalysis; however, finding a proper way to immobilize enzymes is often a challenging task. Implanting enzymes in metal-organic frameworks (MOFs) via co-crystallization, also known as biomineralization, provides enhanced reusability and stability with minimal perturbation and substrate selectivity to the enzyme. Currently, there are limited metal-ligand combinations with a proper protocol guiding the experimental procedures.

View Article and Find Full Text PDF

Aqueous-phase co-crystallization (also known as biomimetic mineralization or biomineralization) is a unique way to encapsulate large enzymes, enzyme clusters, and enzymes with large substrates in metal-organic frameworks (MOFs), broadening the application of MOFs as enzyme carriers. The crystallinity of resultant enzyme@MOF biocomposites, however, can be low, raising a concern about how MOF crystal packing quality affects enzyme performance upon encapsulation. The challenges to overcome this concern are (1) the limited database of enzyme performance upon biomineralization in different aqueous MOFs and (2) the difficulty in probing enzyme restriction and motion in the resultant MOF scaffolds, which are related to the local crystal packing quality/density, under the interference of the MOF backgrounds.

View Article and Find Full Text PDF

Antisense oligonucleotides (ASOs) are single-stranded short nucleic acids that silence the expression of target mRNAs and show increasing therapeutic potential. Since ASOs are internalized by many cell types, both normal and diseased cells, gene silencing in unwanted cells is a significant challenge for their therapeutic use. To address this challenge, we created conditional ASOs that become active only upon detecting transcripts unique to the target cell.

View Article and Find Full Text PDF

Pkd2L1 (also called TRPP3) is a non-selective cation channel permeable to Ca(2+), Na(+), and K(+) and is activated by Ca(2+). It is also part of an acid-triggered off-response cation channel complex. We previously reported roles of the Pkd2L1 C-terminal fragments in its channel function, but the role of the N terminus remains unclear.

View Article and Find Full Text PDF

Transient receptor potential (TRP) polycystin 2 and 3 (TRPP2 and 3) are homologous members of the TRP superfamily of cation channels but have different physiological functions. TRPP2 is part of a flow sensor, and is defective in autosomal dominant polycystic kidney disease and implicated in left-right asymmetry development. TRPP3 is reported to implicate in sour tasting in bipolar cells of taste buds of the tongue and in the regulation of pH-sensitive action potential in neurons surrounding the central canal of spinal cord.

View Article and Find Full Text PDF

Polycystin-2 (PC2) is the product of the PKD2 gene, which is mutated in 10-15% patients of autosomal dominant polycystic kidney disease (ADPKD). PC2 is an integral transmembrane protein and acts as a calcium-permeable cation channel. The functional modulation of this channel by other protein partners remains largely unknown.

View Article and Find Full Text PDF

Presenilins are polytopic, integral proteins that control intramembranous proteolysis at the "gamma-" and "epsilon-" cleavage sites of the Alzheimer amyloid-beta precursor protein (APP) to yield amyloid-beta peptide (Abeta) and the APP intracellular domain (AICD). We have overexpressed a constitutively active, pathogenic form of PS1 (known as PS1 Delta exon 9) together with its substrate, APP-C99, in Spodoptera frugiperda (Sf9) cells. Sf9 cells have been reported to lack endogenous gamma-secretase, an unexpected finding since there exists an insect homologue of PS1.

View Article and Find Full Text PDF

The tandem affinity purification (TAP) procedure was initially developed as a tool for rapid purification of native protein complexes expressed at their natural levels in yeast cells. This purification procedure was also applied to study interactions between soluble proteins in mammalian cells. In order to apply this procedure to mammalian membrane proteins, we created a modified TAP tag expression vector and fused with the PKD2 gene, encoding a membrane cation channel protein, polycystin-2, mutated in 15% of autosomal dominant polycystic kidney disease.

View Article and Find Full Text PDF

Chemoprevention is the use of noncytotoxic therapeutic intervention at the early stages of carcinogenesis against the development and progression of mutant clones to invasive cancer. Retinoids are the most extensively studied and one of the most prominent groups of chemopreventive agents to reach clinical trials. Acute promyelocytic leukemia is the first human malignancy that is successfully treated with all-trans retinoic acid.

View Article and Find Full Text PDF

Polycystin-L (PCL) is an isoform of polycystin-2, the product of the second gene associated with autosomal dominant polycystic kidney disease, and functions as a Ca(2+)-regulated nonselective cation channel. We recently demonstrated that polycystin-2 interacts with troponin I, an important regulatory component of the actin microfilament complex in striated muscle cells and an angiogenesis inhibitor. In this study, using the two-microelectrode voltage-clamp technique and Xenopus oocyte expression system, we showed that the calcium-induced PCL channel activation is substantially inhibited by the skeletal and cardiac troponin I (60% and 31% reduction, respectively).

View Article and Find Full Text PDF

Polycystin-2 (PC2), encoded by the PKD2 gene, is mutated in 10-15% of autosomal dominant polycystic kidney disease (ADPKD) patients. PC2 is a Ca(2+)-permeable nonselective cation channel and is present in kidney and many other organs. Likewise, PKD2-mutated patients and mice exhibit extrarenal abnormalities.

View Article and Find Full Text PDF