Improved recycling technologies can offer sustainable end-of-life options for plastic waste. While polyolefins can be converted into small hydrocarbons over acid catalysts at high temperatures, we demonstrate an alternative mechano-catalytic strategy at ambient conditions. The mechanism is fundamentally different from classical acidity-driven high-temperature approaches, exploiting mechanochemically generated radical intermediates.
View Article and Find Full Text PDFPolyurethanes (PUs) are highly versatile polymers widely utilized across industries. However, chemical recycling of PU poses significant challenges due to the harsh conditions required and the formation of complex mixtures of oligomers upon depolymerization. Addressing this inherent lack of recyclability, we developed closed-loop recyclable PU materials by integrating cleavable acetal groups.
View Article and Find Full Text PDF