Photoactivated localization microscopy (PALM) produces an array of localization coordinates by means of photoactivatable fluorescent proteins. However, observations are subject to fluorophore multiple blinking and each protein is included in the dataset an unknown number of times at different positions, due to localization error. This causes artificial clustering to be observed in the data.
View Article and Find Full Text PDFThe mid--value is a proposed improvement on the ordinary -value for the case where the test statistic is partially or completely discrete. In this case, the ordinary -value is conservative, meaning that its null distribution is larger than a uniform distribution on the unit interval, in the usual stochastic order. The mid--value is not conservative.
View Article and Find Full Text PDFSingle-molecule localisation microscopy (SMLM) allows the localisation of fluorophores with a precision of 10-30 nm, revealing the cell's nanoscale architecture at the molecular level. Recently, SMLM has been extended to 3D, providing a unique insight into cellular machinery. Although cluster analysis techniques have been developed for 2D SMLM data sets, few have been applied to 3D.
View Article and Find Full Text PDFCell function is regulated by the spatiotemporal organization of the signaling machinery, and a key facet of this is molecular clustering. Here, we present a protocol for the analysis of clustering in data generated by 2D single-molecule localization microscopy (SMLM)-for example, photoactivated localization microscopy (PALM) or stochastic optical reconstruction microscopy (STORM). Three features of such data can cause standard cluster analysis approaches to be ineffective: (i) the data take the form of a list of points rather than a pixel array; (ii) there is a non-negligible unclustered background density of points that must be accounted for; and (iii) each localization has an associated uncertainty in regard to its position.
View Article and Find Full Text PDFSingle-molecule localization-based super-resolution microscopy techniques such as photoactivated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM) produce pointillist data sets of molecular coordinates. Although many algorithms exist for the identification and localization of molecules from raw image data, methods for analyzing the resulting point patterns for properties such as clustering have remained relatively under-studied. Here we present a model-based Bayesian approach to evaluate molecular cluster assignment proposals, generated in this study by analysis based on Ripley's K function.
View Article and Find Full Text PDF