Publications by authors named "Patrick Rosendahl Andreassen"

Two-component systems are key signal-transduction systems that enable bacteria to respond to a wide variety of environmental stimuli. The human pathogen, (pneumococcus) encodes 13 two-component systems and a single orphan response regulator, most of which are significant for pneumococcal pathogenicity. Mapping the regulatory networks governed by these systems is key to understand pneumococcal host adaptation.

View Article and Find Full Text PDF

Pathogens of the Streptococcus genus inhabit many different environmental niches during the course of an infection in a human host and the bacteria must adjust their metabolism according to available nutrients. Despite their lack of the citric-acid cycle, some streptococci proliferate in niches devoid of a readily available carbohydrate source. Instead they rely on carbohydrate scavenging for energy acquisition, which are obtained from the host.

View Article and Find Full Text PDF

Site-directed mutagenesis is a technique used to introduce specific mutations in DNA to investigate the interaction between small non-coding ribonucleic acid (sRNA) molecules and target messenger RNAs (mRNAs). In addition, site-directed mutagenesis is used to map specific protein binding sites to RNA. A 2-step and 3-step PCR based introduction of mutations is described.

View Article and Find Full Text PDF

Production of curli, extracellular protein structures important for Escherichia coli biofilm formation, is governed by a highly complex regulatory mechanism that integrates multiple environmental signals through the involvement of numerous proteins and small non-coding RNAs (sRNAs). No less than seven sRNAs (McaS, RprA, GcvB, RydC, RybB, OmrA and OmrB) are known to repress the expression of the curli activator CsgD. Many of the sRNAs repress CsgD production by binding to the csgD mRNA at sites far upstream of the ribosomal binding site.

View Article and Find Full Text PDF

The lac promoter is one of the most commonly used promoters for expression control of recombinant genes in E. coli. In the absence of galactosides, the lac promoter is repressed by its repressor protein LacI.

View Article and Find Full Text PDF