Publications by authors named "Patrick Robison"

In heart failure, an increased abundance of post-translationally detyrosinated microtubules stiffens the cardiomyocyte and impedes its contractile function. Detyrosination promotes interactions between microtubules, desmin intermediate filaments, and the sarcomere to increase cytoskeletal stiffness, yet the mechanism by which this occurs is unknown. We hypothesized that detyrosination may regulate the growth and shrinkage of dynamic microtubules to facilitate interactions with desmin and the sarcomere.

View Article and Find Full Text PDF

Mechanical forces are transduced to nuclear responses via the linkers of the nucleoskeleton and cytoskeleton (LINC) complex, which couples the cytoskeleton to the nuclear lamina and associated chromatin. While disruption of the LINC complex can cause cardiomyopathy, the relevant interactions that bridge the nucleoskeleton to cytoskeleton are poorly understood in the cardiomyocyte, where cytoskeletal organization is unique. Furthermore, while microtubules and desmin intermediate filaments associate closely with cardiomyocyte nuclei, the importance of these interactions is unknown.

View Article and Find Full Text PDF

Detyrosinated microtubules provide mechanical resistance that can impede the motion of contracting cardiomyocytes. However, the functional effects of microtubule detyrosination in heart failure or in human hearts have not previously been studied. Here, we utilize mass spectrometry and single-myocyte mechanical assays to characterize changes to the cardiomyocyte cytoskeleton and their functional consequences in human heart failure.

View Article and Find Full Text PDF

The mechanical role of cardiac microtubules (MTs) has been a topic of some controversy. Early studies, which relied largely on pharmacological interventions that altered the MT cytoskeleton as a whole, presented no consistent role. Recent advances in the ability to observe and manipulate specific properties of the cytoskeleton have strengthened our understanding.

View Article and Find Full Text PDF

Introduction: Respiratory and locomotor skeletal muscle dysfunction are common findings in chronic obstructive pulmonary disease (COPD); however, the mechanisms that cause muscle impairment in COPD are unclear. Because Ca signaling in excitation-contraction (E-C) coupling is important for muscle activity, we hypothesized that Ca dysregulation could contribute to muscle dysfunction in COPD.

Methods: Intercostal and flexor digitorum brevis muscles from control and cigarette smoke-exposed mice were investigated.

View Article and Find Full Text PDF
Article Synopsis
  • The study suggests that in the early embryonic heart tube, mechanical signaling is key to coordinating heartbeats, rather than the traditional focus on electrical signaling.
  • The researchers present a biophysical model showing that cardiac myocytes (CMs) react within an elastic-fluid extracellular matrix, which affects the speed and strain of heart contractions.
  • Experimental disruptions of electrical conduction in adult hearts led to failure, while embryonic hearts remained functional, supporting the idea that mechanical coordination is crucial in the early stages of heart development.
View Article and Find Full Text PDF

The microtubule (MT) cytoskeleton can transmit mechanical signals and resist compression in contracting cardiomyocytes. How MTs perform these roles remains unclear because of difficulties in observing MTs during the rapid contractile cycle. Here, we used high spatial and temporal resolution imaging to characterize MT behavior in beating mouse myocytes.

View Article and Find Full Text PDF

In striated muscle, X-ROS is the mechanotransduction pathway by which mechanical stress transduced by the microtubule network elicits reactive oxygen species. X-ROS tunes Ca(2+) signalling in healthy muscle, but in diseases such as Duchenne muscular dystrophy (DMD), microtubule alterations drive elevated X-ROS, disrupting Ca(2+) homeostasis and impairing function. Here we show that detyrosination, a post-translational modification of α-tubulin, influences X-ROS signalling, contraction speed and cytoskeletal mechanics.

View Article and Find Full Text PDF

Background: The NFATc transcription factor family is responsible for coupling cytoplasmic calcium signals to transcription programs in a wide variety of cell types. In skeletal muscle, these transcription factors control the fiber type in response to muscle activity. This excitation-transcription (E-T) coupling permits functional adaptation of muscle according to use.

View Article and Find Full Text PDF

The transcription factor nuclear factor of activated T-cells 5 (NFAT5) is a key protector from hypertonic stress in the kidney, but its role in skeletal muscle is unexamined. Here, we evaluate the effects of glucose hypertonicity and hyperglycemia on endogenous NFAT5 activity, transverse tubular system morphology and Ca(2+) signaling in adult murine skeletal muscle fibers. We found that exposure to elevated glucose (25-50 mmol/L) increased NFAT5 expression and nuclear translocation, and NFAT-driven transcriptional activity.

View Article and Find Full Text PDF

Primary culture models of single adult skeletal muscle fibers dissociated from locomotor muscles adhered to glass coverslips are routine and allow monitoring of functional processes in living cultured fibers. To date, such isolated fiber cultures have not been established for respiratory muscles, despite the fact that dysfunction of core respiratory muscles leading to respiratory arrest is the most common cause of death in many muscular diseases. Here we present the first description of an adherent culture system for single adult intercostal muscle fibers from the adult mouse.

View Article and Find Full Text PDF