Publications by authors named "Patrick Rauter"

The fabrication and characterization of an infrared photodetector based on GaAs droplet epitaxy quantum dots embedded in AlGaAs barrier is reported. The high control over dot electronic properties and the high achievable number density allowed by droplet epitaxy technique permitted us to realize a device using a single dot layer in the active region. Moreover, thanks to the independent control over dot height and width, we were able to obtain a very sharp absorption peak in the thermal infrared region (3-8 μm).

View Article and Find Full Text PDF

We demonstrate p-type SiGe quantum well infrared photodetectors (QWIPs) on a strained-silicon-on-insulator (sSOI) substrate. The sSOI system allows strain-balancing between the QWIP heterostructure with an average composition of SiGe and the substrate, and therefore lifts restrictions to the active material thickness faced by SiGe growth on silicon or silicon-on-insulator substrates. The realized sSOI QWIPs feature a responsivity peak at detection wavelengths around 6 µm, based on a transition between heavy-hole states.

View Article and Find Full Text PDF

Efficient coupling to integrated high-quality-factor cavities is crucial for the employment of germanium quantum dot (QD) emitters in future monolithic silicon-based optoelectronic platforms. We report on strongly enhanced emission from single Ge QDs into L3 photonic crystal resonator (PCR) modes based on precise positioning of these dots at the maximum of the respective mode field energy density. Perfect site control of Ge QDs grown on prepatterned silicon-on-insulator substrates was exploited to fabricate in one processing run almost 300 PCRs containing single QDs in systematically varying positions within the cavities.

View Article and Find Full Text PDF

We demonstrate surface emission of terahertz (THz) frequency radiation from a monolithic quantum cascade laser with built-in control over the degree of circular polarization by "fishbone" gratings composed of orthogonally oriented aperture antennas. Different grating concepts for circularly polarized emission are introduced along with the presentation of simulations and experimental results. Fifth-order gratings achieve a degree of circular polarization of up to 86% within a 12°-wide core region of their emission lobes in the far field.

View Article and Find Full Text PDF

Graphene is an attractive photoconductive material for optical detection due to its broad absorption spectrum and ultrashort response time. However, it remains a great challenge to achieve high responsivity in graphene detectors because of graphene's weak optical absorption (only 2.3% in the monolayer graphene sheet) and short photocarrier lifetime (<1 ps).

View Article and Find Full Text PDF

We report on multi-wavelength arrays of master-oscillator power-amplifier quantum cascade lasers operating at wavelengths between 9.2 and 9.8 μm.

View Article and Find Full Text PDF