Publications by authors named "Patrick R Romano"

Protein-carbohydrate interactions are very often mediated by the stacking CH-π interactions involving the side chains of aromatic amino acids such as tryptophan (Trp), tyrosine (Tyr) or phenylalanine (Phe). Especially suitable for stacking is the Trp residue. Analysis of the PDB database shows Trp stacking for 265 carbohydrate or carbohydrate like ligands in 5 208 Trp containing motives.

View Article and Find Full Text PDF

The Aleuria aurantia lectin (AAL) derived from orange peel fungus contains five fucose-binding sites that recognizes fucose bound in α-1,2, α-1,3, α-1,4, and α-1,6 linkages to N-acetylglucosamine and galactose. Recently, we have created several recombinant AAL (rAAL) proteins that had altered binding affinity to fucose linkages. In this report, we further characterize the binding specificity of one of the mutated lectins, N224Q lectin.

View Article and Find Full Text PDF

A new matrix assisted laser desorption ionization imaging mass spectrometry (MALDI-IMS) method to spatially profile the location and distribution of multiple N-linked glycan species in tissues is described. Application of an endoglycosidase, peptide N-glycosidase F (PNGaseF), directly on tissues followed by incubation releases N-linked glycan species amenable to detection by MALDI-IMS. The method has been designed to simultaneously profile the multiple glycan species released from intracellular organelle and cell surface glycoproteins, while maintaining histopathology compatible preparation workflows.

View Article and Find Full Text PDF

Changes in glycosylation have long been associated with disease. While there are many methods to detect changes in glycosylation, plant derived lectins are often used to determine changes on specific proteins or molecules of interest. One change in glycosylation that has been observed by us and by others is a disease or antigen associated increase in fucosylation on N-linked glycans.

View Article and Find Full Text PDF

Background/aims: Golgi protein-73 (GP73) is up-regulated in hepatocellular carcinoma (HCC). The aims of this study were to determine if GP73 is detected in the serum, and to establish the sensitivity and specificity of serum GP73 for diagnosing HCC.

Methods: Serum GP73 was detected by immunoblots and quantified by densitometric analysis.

View Article and Find Full Text PDF

Chronic infection with hepatitis B virus (HBV) is associated with the majority of hepatocellular carcinoma (HCC). The diagnosis of HCC is usually made in the late stages of the disease, when treatment options are limited and prognosis is poor. We therefore have developed a method of glycoproteomic analysis in an attempt to discover serum markers that can assist in the early detection of HBV-induced liver cancer.

View Article and Find Full Text PDF

Analysis of the polypeptide profile in tissues, cells, and sera by high-resolution two-dimensional (2-D) gel electrophoresis offers promise in the identification of biomarkers that correlate with disease. However, sera contain many polypeptides bearing N-linked glycosylation that can complicate interpretation. Therefore, we tested the possibility that de-N-glycosylation of the polypeptides present in human serum would result in a simplification of serum proteome profiles.

View Article and Find Full Text PDF

The hepatitis C virus envelope protein, E2, is an endoplasmic reticulum (ER)-bound protein that contains a region of sequence homology with the double-stranded RNA-activated protein kinase PKR and its substrate, the eukaryotic translation initiation factor 2 (eIF2). We previously reported that E2 modulates global translation through inhibition of the interferon-induced antiviral protein PKR through its PKR-eIF2alpha phosphorylation site homology domain (PePHD). Here we show that the PKR-like ER-resident kinase (PERK) binds to and is also inhibited by E2.

View Article and Find Full Text PDF

The 52 kDa protein referred to as P52(rIPK) was first identified as a regulator of P58(IPK), a cellular inhibitor of the RNA-dependent protein kinase (PKR). P52(rIPK) and P58(IPK) each possess structural domains implicated in stress signaling, including the charged domain of P52(rIPK) and the tetratricopeptide repeat (TPR) and DnaJ domains of P58(IPK). The P52(rIPK) charged domain exhibits homology to the charged domains of Hsp90, including the Hsp90 geldanamycin-binding domain.

View Article and Find Full Text PDF

Endoplasmic reticulum (ER) stress signaling is an adaptive cellular response to the loss of ER Ca(2+) homeostasis and/or the accumulation of misfolded, unassembled, or aggregated proteins in the ER lumen. ER stress-activated signaling pathways regulate protein synthesis initiation and can also trigger apoptosis through the ER-associated caspase 12. Viruses that utilize the host cell ER as an integral part of their life cycle would be predicted to cause some level of ER stress.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session3fjk4uhllmcuv56r1uvkrnl085n3gfo1): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once