Small molecules selectively inducing peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1α acetylation and inhibiting glucagon-dependent gluconeogenesis causing anti-diabetic effects have been identified. However, how these small molecules selectively suppress the conversion of gluconeogenic metabolites into glucose without interfering with lipogenesis is unknown. Here, we show that a small molecule SR18292 inhibits hepatic glucose production by increasing lactate and glucose oxidation.
View Article and Find Full Text PDFObjective: The skeleton is one of the largest organs in the body, wherein metabolism is integrated with systemic energy metabolism. However, the bioenergetic programming of osteocytes, the most abundant bone cells coordinating bone metabolism, is not well defined. Here, using a mouse model with partial penetration of an osteocyte-specific PPARG deletion, we demonstrate that PPARG controls osteocyte bioenergetics and their contribution to systemic energy metabolism independently of circulating sclerostin levels, which were previously correlated with metabolic status of extramedullary fat depots.
View Article and Find Full Text PDFUnlabelled: We have identified a NMIIA and IIB-specific small molecule inhibitor, MT-125, and have studied its effects in GBM. MT-125 has high brain penetrance and retention and an excellent safety profile; blocks GBM invasion and cytokinesis, consistent with the known roles of NMII; and prolongs survival as a single agent in murine GBM models. MT-125 increases signaling along both the PDGFR- and MAPK-driven pathways through a mechanism that involves the upregulation of reactive oxygen species, and it synergizes with FDA-approved PDGFR and mTOR inhibitors .
View Article and Find Full Text PDFObjective: The skeleton is one of the largest organs in the body, wherein metabolism is integrated with systemic energy metabolism. However, the bioenergetic programming of osteocytes, the most abundant bone cells coordinating bone metabolism, is not well defined. Here, using a mouse model with partial penetration of an osteocyte-specific PPARG deletion, we demonstrate that PPARG controls osteocyte bioenergetics and their contribution to systemic energy metabolism independently of circulating sclerostin levels.
View Article and Find Full Text PDFIGF2BP2 (IMP2) is an RNA-binding protein that contributes to cancer tumorigenesis and metabolic disorders. Structural studies focused on individual IMP2 domains have provided important mechanistic insights into IMP2 function; however, structural information on full-length IMP2 is lacking but necessary to understand how to target IMP2 activity in drug discovery. In this study, we investigated the behavior of full-length IMP2 and the influence of RNA binding using biophysical and structural methods including mass photometry, hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS), and small angle x-ray scattering (SAXS).
View Article and Find Full Text PDFIn enterobacteria such as Escherichia coli, the general stress response is mediated by σ, the stationary phase dissociable promoter specificity subunit of RNA polymerase. σ is degraded by ClpXP during active growth in a process dependent on the RssB adaptor, which is thought to be stimulated by the phosphorylation of a conserved aspartate in its N-terminal receiver domain. Here we present the crystal structure of full-length RssB bound to a beryllofluoride phosphomimic.
View Article and Find Full Text PDFHydrogen-deuterium exchange coupled with mass spectrometry (HDX-MS) is widely used for monoclonal antibody (mAb) epitope mapping, which aids in the development of therapeutic mAbs and vaccines, as well as enables the understanding of viral immune evasion. Numerous mAbs are known to recognize N-glycosylated epitopes and to bind in close proximity to an -glycan site; however, glycosylated protein sites are typically obscured from HDX detection as a result of the inherent heterogeneity of glycans. To overcome this limitation, we covalently immobilized the glycosidase PNGase Dj on a solid resin and incorporated it into an online HDX-MS workflow for post-HDX deglycosylation.
View Article and Find Full Text PDFJasmonates (JAs) are plant hormones with crucial roles in development and stress resilience. They activate MYC transcription factors by mediating the proteolysis of MYC inhibitors called JAZ proteins. In the absence of JA, JAZ proteins bind and inhibit MYC through the assembly of MYC-JAZ-Novel Interactor of JAZ (NINJA)-TPL repressor complexes.
View Article and Find Full Text PDFIntroduction: The view that bone and energy metabolism are integrated by common regulatory mechanisms is broadly accepted and supported by multiple strands of evidence. This includes the well-characterized role of the PPARγ nuclear receptor, which is a common denominator in energy metabolism and bone metabolism. Little is known, however, about the role of PPARα nuclear receptor, a major regulator of lipid metabolism in other organs, in bone.
View Article and Find Full Text PDFInverse agonists of peroxisome proliferator activated receptor γ (PPARγ) have emerged as safer alternatives to full agonists for their reduced side effects while still maintaining impressive insulin-sensitizing properties. To shed light on their molecular mechanism, we characterized the interaction of the PPARγ ligand binding domain with SR10221. X-ray crystallography revealed a novel binding mode of SR10221 in the presence of a transcriptionally repressing corepressor peptide, resulting in much greater destabilization of the activation helix, H12, than without corepressor peptide.
View Article and Find Full Text PDFSARS-CoV-2, a human coronavirus, is the causative agent of the COVID-19 pandemic. Its genome is translated into two large polyproteins subsequently cleaved by viral papain-like protease and main protease (Mpro). Polyprotein processing is essential yet incompletely understood.
View Article and Find Full Text PDFBackground: Despite numerous therapeutic options, safe and curative therapy is unavailable for most patients with chronic lymphocytic leukemia (CLL). A drawback of current therapies such as the anti-CD20 monoclonal antibody (mAb) rituximab is the elimination of all healthy B cells, resulting in impaired humoral immunity. We previously reported the identification of a patient-derived, CLL-binding mAb, JML-1, and identified sialic acid-binding immunoglobulin-like lectin-6 (Siglec-6) as the target of JML-1.
View Article and Find Full Text PDFCereblon (CRBN) is a ubiquitin ligase (E3) substrate receptor protein co-opted by CRBN E3 ligase modulatory drug (CELMoD) agents that target therapeutically relevant proteins for degradation. Prior crystallographic studies defined the drug-binding site within CRBN's thalidomide-binding domain (TBD), but the allostery of drug-induced neosubstrate binding remains unclear. We performed cryo-electron microscopy analyses of the DNA damage-binding protein 1 (DDB1)-CRBN apo complex and compared these structures with DDB1-CRBN in the presence of CELMoD compounds alone and complexed with neosubstrates.
View Article and Find Full Text PDFOsteoarthritis (OA) is the most prevalent chronic joint disease which increases in frequency with age eventually impacting most people over the age of 65. OA is the leading cause of disability and impaired mobility, yet the pathogenesis of OA remains unclear. Treatments have focused mainly on pain relief and reducing joint swelling.
View Article and Find Full Text PDFLiver receptor homologue-1 (LRH-1) is a phospholipid-sensing nuclear receptor that has shown promise as a target for alleviating intestinal inflammation and metabolic dysregulation in the liver. LRH-1 contains a large ligand-binding pocket, but generating synthetic modulators has been challenging. We have had recent success generating potent and efficacious agonists through two distinct strategies.
View Article and Find Full Text PDFThe innate immune receptor RIG-I provides a first line of defense against viral infections. Viral RNAs are recognized by RIG-I's C-terminal domain (CTD), but the RNA must engage the helicase domain to release the signaling CARD (Caspase Activation and Recruitment Domain) domains from their autoinhibitory CARD2:Hel2i interactions. Because the helicase itself lacks RNA specificity, mechanisms to proofread RNAs entering the helicase domain must exist.
View Article and Find Full Text PDFAmong various protein posttranslational modifiers, poly-ADP-ribose polymerase 1 (PARP1) is a key player for regulating numerous cellular processes and events through enzymatic attachments of target proteins with ADP-ribose units donated by nicotinamide adenine dinucleotide (NAD). Human PARP1 is involved in the pathogenesis and progression of many diseases. PARP1 inhibitors have received approvals for cancer treatment.
View Article and Find Full Text PDFHuman immunodeficiency virus-1 (HIV-1) is the causative agent of acquired immunodeficiency syndrome (AIDS). HIV-1, like all retroviruses, stably integrates its vDNA copy into host chromatin, a process allowing for permanent infection. This essential step for HIV-1 replication is catalyzed by viral integrase (IN) and aided by cellular protein LEDGF/p75.
View Article and Find Full Text PDFGPR158 is an orphan G protein–coupled receptor (GPCR) highly expressed in the brain, where it controls synapse formation and function. GPR158 has also been implicated in depression, carcinogenesis, and cognition. However, the structural organization and signaling mechanisms of GPR158 are largely unknown.
View Article and Find Full Text PDFThe RNA sensor MDA5 recruits the signaling adaptor MAVS to initiate type I interferon signaling and downstream antiviral responses, a process that requires K63-linked polyubiquitin chains. Here, we examined the mechanisms whereby K63-polyUb chain regulate MDA5 activation. Only long unanchored K63-polyUb (n ≥ 8) could mediate tetramerization of the caspase activation and recruitment domains of MDA5 (CARDs).
View Article and Find Full Text PDF