Publications by authors named "Patrick R Arsenault"

The prolyl hydroxylase domain (PHD) protein:hypoxia inducible factor (HIF) pathway is the main pathway by which changes in oxygen concentration are transduced to changes in gene expression. In mammals, there are three PHD paralogues, and PHD2 has emerged as a particularly critical one for regulating HIF target genes such as erythropoietin (EPO), which controls red cell mass and hematocrit. PHD2 is distinctive among the three PHDs in that it contains an N-terminal MYND-type zinc finger.

View Article and Find Full Text PDF

Prolyl hydroxylase domain protein 2 (PHD2) (also known as EGLN1) is a key oxygen sensor in mammals that posttranslationally modifies hypoxia-inducible factor α (HIF-α) and targets it for degradation. In addition to its catalytic domain, PHD2 contains an evolutionarily conserved zinc finger domain, which we have previously proposed recruits PHD2 to the HSP90 pathway to promote HIF-α hydroxylation. Here, we provide evidence that this recruitment is critical both in vitro and in vivo We show that in vitro, the zinc finger can function as an autonomous recruitment domain to facilitate interaction with HIF-α.

View Article and Find Full Text PDF

Prolyl hydroxylation is a PTM that plays an important role in the formation of collagen fibrils and in the oxygen-dependent regulation of hypoxia inducible factor-α (HIF-α). While this modification has been well characterized in the context of these proteins, it remains unclear to what extent it occurs in the remaining mammalian proteome. We explored this question using MS to analyze cellular extracts subjected to various fractionation strategies.

View Article and Find Full Text PDF

The transcription of the erythropoietin () gene is tightly regulated by the hypoxia response pathway to maintain oxygen homeostasis. Elevations in serum EPO level may be reflected in an augmentation in the red cell mass, thereby causing erythrocytosis. Studies on erythrocytosis have provided insights into the function of the oxygen-sensing pathway and the critical proteins involved in the regulation of transcription.

View Article and Find Full Text PDF

The Tibetan population has adapted to the chronic hypoxia of high altitude. Tibetans bear a genetic signature in the prolyl hydroxylase domain protein 2 (PHD2/EGLN1) gene, which encodes for the central oxygen sensor of the hypoxia-inducible factor (HIF) pathway. Recent studies have focused attention on two nonsynonymous coding region substitutions, D4E and C127S, both of which are markedly enriched in the Tibetan population.

View Article and Find Full Text PDF

The central pathway for controlling red cell mass is the PHD (prolyl hydroxylase domain protein):hypoxia-inducible factor (HIF) pathway. HIF, which is negatively regulated by PHD, activates numerous genes, including ones involved in erythropoiesis, such as the ERYTHROPOIETIN (EPO) gene. Recent studies have implicated PHD2 as the key PHD isoform regulating red cell mass.

View Article and Find Full Text PDF

Prolyl hydroxylase domain protein 2 (PHD2, also known as Egg Laying Defective Nine homolog 1) is a key oxygen-sensing protein in metazoans. In an oxygen-dependent manner, PHD2 site-specifically prolyl hydroxylates the master transcription factor of the hypoxic response, hypoxia-inducible factor-α (HIF-α), thereby targeting HIF-α for degradation. In this report we show that the heat shock protein 90 (HSP90) co-chaperones p23 and FKBP38 interact via a conserved Pro-Xaa-Leu-Glu motif (where Xaa = any amino acid) in these proteins with the N-terminal Myeloid Nervy and DEAF-1 (MYND)-type zinc finger of PHD2.

View Article and Find Full Text PDF

Artemisinin is a highly effective sesquiterpene lactone therapeutic produced in the plant, Artemisia annua. Despite its efficacy against malaria and many other infectious diseases and neoplasms, the drug is in short supply mainly because the plant produces low levels of the compound. This review updates the current understanding of artemisinin biosynthesis with a special focus on the emerging knowledge of how biosynthesis of the compound is regulated in planta.

View Article and Find Full Text PDF

Artemisia annua L. produces the sesquiterpene lactone, artemisinin, a potent antimalarial drug that is also effective in treating other parasitic diseases, some viral infections and various neoplasms. Artemisinin is also an allelopathic herbicide that can inhibit the growth of other plants.

View Article and Find Full Text PDF

The relationship between the transition to budding and flowering in Artemisia annua and the production of the antimalarial sesquiterpene, artemisinin (AN), the dynamics of artemisinic metabolite changes, AN-related transcriptional changes, and plant and trichome developmental changes were measured. Maximum production of AN occurs during full flower stage within floral tissues, but that changes in the leafy bracts and nonbolt leaves as the plant shifts from budding to full flower. Expression levels of early pathway genes known to be involved in isopentenyl diphosphate and farnesyl diphosphate biosynthesis leading to AN were not immediately positively correlated with either AN or its precursors.

View Article and Find Full Text PDF

The biosynthesis of the valuable sesquiterpene anti-malarial, artemisinin, is known to respond to exogenous sugar concentrations. Here young Artemisia annua L. seedlings (strain YU) were used to measure the transcripts of six key genes in artemisinin biosynthesis in response to growth on sucrose, glucose, or fructose.

View Article and Find Full Text PDF

The antimalarial sesquiterpene, artemisinin, is in short supply; demand is not being met, and the role of artemisinin in the plant is not well established. Prior work showed that addition of dimethyl sulfoxide (DMSO) to seedlings increased artemisinin in their shoots and this study further investigated that serendipitous observation. When in vitro-cultured Artemisia annua rooted shoots were fed different amounts of DMSO (0-2.

View Article and Find Full Text PDF

Artemisinin the sesquiterpene endoperoxide lactone extracted from the herb Artemisia annua, remains the basis for the current preferred treatment against the malaria parasite Plasmodium falciparum. In addition, artemisinin and its derivatives show additional anti-parasite, anti-cancer, and anti-viral properties. Widespread use of this valuable secondary metabolite has been hampered by low production in vivo and high cost of chemical synthesis in vitro.

View Article and Find Full Text PDF