The Large Plasma Device (LAPD) at UCLA (University of California, Los Angeles) produces an 18 m long, magnetized, quiescent, and uniform plasma at a high repetition rate to enable studies of fundamental plasma physics. Here, we report on a major upgrade to the LAPD plasma source that allows for more robust operation and significant expansion of achievable plasma parameters. The original plasma source made use of a heated barium oxide (BaO) coated nickel sheet as an electron emitter.
View Article and Find Full Text PDFHairpin probes are used to determine electron densities via measuring the shift of the resonant frequency of the probe structure when immersed in a plasma. This manuscript presents new developments in hairpin probe hardware and theory that have enabled measurements in a high electron density plasma, up to approximately 10 cm, corresponding to a plasma frequency of about 9 GHz. Hardware developments include the use of both quarter-wavelength and three-quarter-wavelength partially covered hairpin probes in a transmission mode together with an easily reproducible implementation of the associated microwave electronics using commercial off-the-shelf components.
View Article and Find Full Text PDFLaboratory observations of enhanced loss of fast electrons trapped in a magnetic mirror geometry irradiated by shear Alfvén waves (SAW) are reported. A population of runaway electrons generated by second harmonic electron-cyclotron-resonance heating, as evidenced by the production of hard x rays with energy up to 3 MeV, is subjected to SAW launched with a rotating magnetic field antenna. It is observed that the SAW dramatically affect the trapped fast electrons and scatter them out of the magnetic mirror despite any obvious resonance.
View Article and Find Full Text PDFElectrostatic solitary structures are generated by injection of a suprathermal electron beam parallel to the magnetic field in a laboratory plasma. Electric microprobes with tips smaller than the Debye length (λDe) enabled the measurement of positive potential pulses with half-widths 4 to 25λDe and velocities 1 to 3 times the background electron thermal speed. Nonlinear wave packets of similar velocities and scales are also observed, indicating that the two descend from the same mode which is consistent with the electrostatic whistler mode and result from an instability likely to be driven by field-aligned currents.
View Article and Find Full Text PDF