Publications by authors named "Patrick Pinto"

We have been focused on identifying a structurally different next generation inhibitor to MK-5172 (our Ns3/4a protease inhibitor currently under regulatory review), which would achieve superior pangenotypic activity with acceptable safety and pharmacokinetic profile. These efforts have led to the discovery of a novel class of HCV NS3/4a protease inhibitors containing a unique spirocyclic-proline structural motif. The design strategy involved a molecular-modeling based approach, and the optimization efforts on the series to obtain pan-genotypic coverage with good exposures on oral dosing.

View Article and Find Full Text PDF

Starting from indole-based hepatitis C virus (HCV) NS5B polymerase inhibitor lead compound 1, structure modifications were performed at multiple indole substituents to improve potency and pharmacokinetic (PK) properties. Bicyclic quinazolinone was found to be the best substituent at indole nitrogen, while 4,5-furanylindole was identified as the best core. Compound 11 demonstrated excellent potency.

View Article and Find Full Text PDF

HCV infections are the leading causes for hepatocellular carcinoma and liver transplantation in the United States. Recent advances in drug discovery have identified direct acting antivirals which have significantly improved cure rates in patients. Current efforts are directed towards identification of novel direct acting antiviral targeting different mechanism of actions which could become part of all oral therapies.

View Article and Find Full Text PDF

The discovery of lead compound 2e was described. Its covalent binding to HCV NS5B polymerase enzyme was investigated by X-ray analysis. The results of distribution, metabolism and pharmacokinetics were reported.

View Article and Find Full Text PDF

The characterization of HCV genome has identified various vital functional proteins involved in the life cycle of hepatitis C virus. This has resulted in many novel enzymatic targets that are potential for development of therapeutic agents. The HCV RNA dependent RNA polymerase (HCV NS5B) is one such essential enzyme for HCV replication that has been well characterized and studied by various groups to develop novel therapies for hepatitis C.

View Article and Find Full Text PDF

The installation of geminal substitution at the C5' position of the carbosugar in our pyrimidine-derived hepatitis C inhibitor series is reported. SAR studies around the C5' position led to the installation of the dimethyl group as the optimal functionality. An improved route was subsequently designed to access these substitutions.

View Article and Find Full Text PDF

Introduction of a nitrogen atom into the benzene ring of a previously identified HCV replication (replicase) benzothiazole inhibitor 1, resulted in the discovery of the more potent pyridothiazole analogues 3. The potency and PK properties of the compounds were attenuated by the introductions of various functionalities at the R(1), R(2) or R(3) positions of the molecule (compound 3). Inhibitors 38 and 44 displayed excellent potency, selectivity (GAPDH/MTS CC(50)), PK parameters in all species studied, and cross genotype activity.

View Article and Find Full Text PDF

Based on a previously identified HCV replication (replicase) inhibitor 1, SAR efforts were conducted around the pyrimidine core to improve the potency and pharmacokinetic profile of the inhibitors. A benzothiazole moiety was found to be the optimal substituent at the pyrimidine 5-position. Due to potential reactivity concern, the 4-chloro residue was replaced by a methyl group with some loss in potency and enhanced rat in vivo profile.

View Article and Find Full Text PDF

Starting from indole-based C-3 pyridone HCV NS5B polymerase inhibitor 2, structure-activity relationship (SAR) investigations of the indole N-1 benzyl moiety were performed. This study led to the discovery of irreversible inhibitors with p-fluoro-sulfone- or p-fluoro-nitro-substituted N-1 benzyl groups which achieved breakthrough replicon assay potency (EC(50) = 1 nM). The formation of a covalent bond with adjacent cysteine-366 thiol was was proved by mass spectroscopy and X-ray crystal structure studies.

View Article and Find Full Text PDF

Starting with the indole-based C-3 pyridone lead HCV polymerase inhibitor 2, extensive SAR studies were performed at different positions of the indole core. The best C-5 groups were found to be compact and nonpolar moieties and that the C-6 attachments were not affecting potency. Limited N-1 benzyl-type substituent studies indicated that the best substitutions were fluoro or methyl groups at 2' or 5' positions of the benzyl group.

View Article and Find Full Text PDF

Development of SAR at the C2 position of indole lead 1, a palm site inhibitor of HCV NS5B polymerase (NS5B IC(50)=0.053μM, replicon EC(50)=4.8μM), is described.

View Article and Find Full Text PDF

SAR development of indole-based palm site inhibitors of HCV NS5B polymerase exemplified by initial indole lead 1 (NS5B IC(50)=0.9 μM, replicon EC(50)>100 μM) is described. Structure-based drug design led to the incorporation of novel heterocyclic moieties at the indole C3-position which formed a bidentate interaction with the protein backbone.

View Article and Find Full Text PDF

Boceprevir (SCH 503034), 1, a novel HCV NS3 serine protease inhibitor discovered in our laboratories, is currently undergoing phase III clinical trials. Detailed investigations toward a second generation protease inhibitor culminated in the discovery of narlaprevir (SCH 900518), 37, with improved potency (∼10-fold over 1), pharmacokinetic profile and physicochemical characteristics, currently in phase II human trials. Exploration of synthetic sequence for preparation of 37 resulted in a route that required no silica gel purification for the entire synthesis.

View Article and Find Full Text PDF

HCV infection affects more than 170 million people worldwide and many of those patients will reach the end stage complications of the disease which include hepatocarcinoma and liver failure. The success rate for treatment of patients infected with genotype-1 is about 40%. Therefore, novel treatments are needed to combat the infection.

View Article and Find Full Text PDF

SAR studies on the extension of P3 unit of Boceprevir (1, SCH 503034) with amides and lactams and their synthesis is described. Extensive SAR studies resulted in the identification of 36 bearing 4, 4-dimethyl lactam as the new P4 cap unit with improved potency (K(i)( *)=15nM, EC 90=70nM) and pharmacokinetic properties (Rat AUC (PO)=3.52microMh) compared to 1.

View Article and Find Full Text PDF

HCV infection is considered a silent epidemic because most people infected do not develop acute symptoms. Instead, the disease progresses to a chronic state leading to cirrhosis and hepatocarcinoma. Novel therapies are needed to combat this major health threat.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) infection is the major cause of chronic liver disease, leading to cirrhosis and hepatocellular carcinoma, which affects more than 170 million people worldwide. Currently the only therapeutic regimens are subcutaneous interferon-alpha or polyethylene glycol (PEG)-interferon-alpha alone or in combination with oral ribavirin. Although combination therapy is reasonably successful with the majority of genotypes, its efficacy against the predominant genotype (genotype 1) is moderate at best, with only about 40% of the patients showing sustained virological response.

View Article and Find Full Text PDF

Benzocycloheptapyridine tricyclic compounds with piperazine or substituted piperidine moieties extending either from the 5- or 6-position of the tricyclic bridgehead exhibited enhanced FTase activity: this resulted from favorable binding of the ligand nitrogen with the catalytic zinc found in the FTase. A single isomer at C-11 with piperazine adduct extending from the 6-position, compound 24, exhibited excellent FTase activity with IC50 = 0.007 microM, soft agar IC50 = 72 nM, and Rat AUC(PO, 10 mpk) = 4.

View Article and Find Full Text PDF

As part of a detailed study, the syntheses, biological activities, and pharmacokinetic properties of hydroxylated analogues of the previously described broad spectrum antifungal agents, Sch 51048 (1), Sch 50001 (3), and Sch 50002 (4), are described. Based on an overall superior profile, one of the alcohols, Sch 56592 (2), was selected for clinical studies.

View Article and Find Full Text PDF

Successful efforts to make farnesyl transferase (FT) inhibitors with appropriately tethered ligands designed to interact with a catalytic zinc that exist in the enzyme have been realized. Thus, by introducing either a pyridylmethylamino or propylaminolimidazole amide moieties off the 2-position of the piperidine ring, FT inhibitors with activities in the picomolar range have been achieved as exemplified by compounds 12a and 12b. An X-ray structure of 11b bound to FT shows the enhanced activity is a result of interacting with the active-site zinc.

View Article and Find Full Text PDF

SCH 66336 is a trihalo tricyclic compound that is currently undergoing Phase II clinical trials for the treatment of solid tumors. Modifications of SCH 66336 by incorporating such groups as amides, acids, esters, ureas and lactams off the first or the distal piperidine (from the tricycle) provided potent FPT inhibitors some of which exhibited good cellular activity. A number of these compounds incorporate properties that might improve pharmacokinetic stability of these inhibitors by virtue of their increased solubility or by their change in log P.

View Article and Find Full Text PDF

A comprehensive study of nitration reaction of azatricyclic systems has been carried out. Whereas classical nitrations using KNO(3)-H(2)SO(4) at low temperatures gave nitrated products mainly at the 9-position, use of tetrabutylammonium nitrate-trifluoroacetic anhydride (TBAN-TFAA) resulted in exclusive nitration of the 3-position in the case carbamates 1, and 4-6 and the tricyclic ketone 7. These 3-nitro tricyclic derivatives have been valuable intermediates for the preparation of the very potent farnesyl protein transferase inhibitors such as the tricyclic pyridyl acetamide 32 and other new analogues.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Patrick Pinto"

  • - Patrick Pinto's research focuses on the discovery and optimization of novel antiviral compounds, specifically targeting the hepatitis C virus (HCV) enzymes NS3/4A protease and NS5B polymerase to improve treatment efficacy and safety profiles.
  • - Key findings from his studies include the identification of new structural classes of inhibitors, such as spiro-proline macrocycles and tricyclic indole derivatives, which demonstrated enhanced potency and favorable pharmacokinetics across various HCV genotypes.
  • - His work emphasizes the importance of molecular modeling and structure-activity relationship (SAR) studies in developing direct-acting antivirals, contributing significantly to the advancement of therapies against HCV, which affects millions worldwide.